Hwang YS et al (2020) Reconstitution of prospermatogonial specification in vitro from human induced pluripotent stem cells. Nat Commun 11(1):5656. https://doi.org/10.1038/s41467-020-19350-3
Article CAS PubMed PubMed Central Google Scholar
Tüttelmann F, Ruckert C, Röpke A (2018) Disorders of spermatogenesis: perspectives for novel genetic diagnostics after 20 years of unchanged routine. Med Gen 30(1):12–20. https://doi.org/10.1007/s11825-018-0181-7
Tuttelmann F, Ruckert C, Ropke A (2018) Disorders of spermatogenesis: perspectives for novel genetic diagnostics after 20 years of unchanged routine. Med Genet 30(1):12–20. https://doi.org/10.1007/s11825-018-0181-7
Article CAS PubMed PubMed Central Google Scholar
Coutton C et al (2015) Teratozoospermia: spotlight on the main genetic actors in the human. Hum Reprod Update 21(4):455–485. https://doi.org/10.1093/humupd/dmv020
Article CAS PubMed Google Scholar
Ray PF et al (2017) Genetic abnormalities leading to qualitative defects of sperm morphology or function. Clin Genet 91(2):217–232. https://doi.org/10.1111/cge.12905
Article CAS PubMed Google Scholar
Jiao SY, Yang YH, Chen SR (2021) Molecular genetics of infertility: loss-of-function mutations in humans and corresponding knockout/mutated mice. Hum Reprod Update 27(1):154–189. https://doi.org/10.1093/humupd/dmaa034
Article CAS PubMed Google Scholar
Fawcett DW (1975) The mammalian spermatozoon. Dev Biol 44(2):394–436. https://doi.org/10.1016/0012-1606(75)90411-x
Article CAS PubMed Google Scholar
Russell LD, Russell J, MacGregor GR, Meistrich ML (1991) Linkage of manchette microtubules to the nuclear envelope and observations of the role of the manchette in nuclear shaping during spermiogenesis in rodents. Am J Anat 192(2):97–120. https://doi.org/10.1002/aja.1001920202
Article CAS PubMed Google Scholar
Eddy EM, Toshimori K, O’Brien DA (2003) Fibrous sheath of mammalian spermatozoa. Microsc Res Tech 61(1):103–115. https://doi.org/10.1002/jemt.10320
Article CAS PubMed Google Scholar
Miyata H, Morohoshi A, Ikawa M (2020) Analysis of the sperm flagellar axoneme using gene-modified mice. Exp Anim 69(4):374–381. https://doi.org/10.1538/expanim.20-0064
Article CAS PubMed PubMed Central Google Scholar
Zhao W et al (2018) Outer dense fibers stabilize the axoneme to maintain sperm motility. J Cell Mol Med 22(3):1755–1768. https://doi.org/10.1111/jcmm.13457
Article CAS PubMed Google Scholar
Baltz JM, Williams P, Cone RA (1990) Dense fibers protect mammalian sperm against damage. Biol Reprod 43(3):485–491. https://doi.org/10.1095/biolreprod43.3.485
Article CAS PubMed Google Scholar
Escalier D, Toure A (2012) Morphological defects of sperm flagellum implicated in human male infertility. Med Sci 28(5):503–511. https://doi.org/10.1051/medsci/2012285015
Touré A et al (2021) The genetic architecture of morphological abnormalities of the sperm tail. Hum Genet 140(1):21–42. https://doi.org/10.1007/s00439-020-02113-x
Article CAS PubMed Google Scholar
Wang J et al (2022) Clinical detection, diagnosis and treatment of morphological abnormalities of sperm flagella: a review of literature. Front Genet 13:1034951. https://doi.org/10.3389/fgene.2022.1034951
Article CAS PubMed PubMed Central Google Scholar
Wang X et al (2017) Homozygous DNAH1 frameshift mutation causes multiple morphological anomalies of the sperm flagella in Chinese. Clin Genet 91(2):313–321. https://doi.org/10.1111/cge.12857c
Article CAS PubMed Google Scholar
Gao Y et al (2021) Novel bi-allelic variants in DNAH2 cause severe asthenoteratozoospermia with multiple morphological abnormalities of the flagella. Reprod Biomed 42(5):963–972. https://doi.org/10.1016/j.rbmo.2021.01.011
Lu S et al (2021) Bi-allelic variants in human WDR63 cause male infertility via abnormal inner dynein arms assembly. Cell Discov 7(1):110. https://doi.org/10.1038/s41421-021-00327-5
Article CAS PubMed PubMed Central Google Scholar
Tu C et al (2021) Bi-allelic mutations of DNAH10 cause primary male infertility with asthenoteratozoospermia in humans and mice. Am J Hum Genet 108(8):1466–1477. https://doi.org/10.1016/j.ajhg.2021.06.010
Article CAS PubMed PubMed Central Google Scholar
Tu C et al (2019) Identification of DNAH6 mutations in infertile men with multiple morphological abnormalities of the sperm flagella. Sci Rep 9(1):15864. https://doi.org/10.1038/s41598-019-52436-7
Article CAS PubMed PubMed Central Google Scholar
Wu H et al (2023) DNALI1 deficiency causes male infertility with severe asthenozoospermia in humans and mice by disrupting the assembly of the flagellar inner dynein arms and fibrous sheath. Cell Death Dis 14(2):127. https://doi.org/10.1038/s41419-023-05653-y
Article CAS PubMed PubMed Central Google Scholar
Chen D et al (2021) A novel CCDC39 mutation causes multiple morphological abnormalities of the flagella in a primary ciliary dyskinesia patient. Reprod Biomed 43(5):920–930. https://doi.org/10.1016/j.rbmo.2021.07.005
Xu Y et al (2022) Novel compound heterozygous variants in CCDC40 associated with primary ciliary dyskinesia and multiple morphological abnormalities of the sperm flagella. Pharmacogenomics Pers Med 15:341–350. https://doi.org/10.2147/PGPM.S359821
Cong J et al (2022) Homozygous mutations in CCDC34 cause male infertility with oligoasthenoteratozoospermia in humans and mice. J Med Genet 59(7):710–718. https://doi.org/10.1136/jmedgenet-2021-107919
Article CAS PubMed Google Scholar
Sha Y et al (2020) Biallelic mutations of CFAP74 may cause human primary ciliary dyskinesia and MMAF phenotype. J Hum Genet 65(11):961–969. https://doi.org/10.1038/s10038-020-0790-2
Article CAS PubMed Google Scholar
Liu S et al (2021) CFAP61 is required for sperm flagellum formation and male fertility in human and mouse. Development. https://doi.org/10.1242/dev.199805
Article PubMed PubMed Central Google Scholar
Liu C et al (2021) Deleterious variants in X-linked CFAP47 induce asthenoteratozoospermia and primary male infertility. Am J Hum Genet 108(2):309–323. https://doi.org/10.1016/j.ajhg.2021.01.002
Article CAS PubMed PubMed Central Google Scholar
He X et al (2020) Bi-allelic loss-of-function variants in CFAP58 cause flagellar axoneme and mitochondrial sheath defects and asthenoteratozoospermia in humans and mice. Am J Hum Genet 107(3):514–526. https://doi.org/10.1016/j.ajhg.2020.07.010
Article CAS PubMed PubMed Central Google Scholar
Tian S et al (2023) Biallelic mutations in CFAP54 cause male infertility with severe MMAF and NOA. J Med Genet 60(8):827–834. https://doi.org/10.1136/jmg-2022-108887
Lu Y et al (2013) The compound heterozygous mutations of CFAP65 cause multiple morphological abnormalities of sperm flagella in infertile men. QJM. https://doi.org/10.1093/qjmed/hcad205
Beurois J et al (2019) CFAP70 mutations lead to male infertility due to severe astheno-teratozoospermia. A case report. Hum Reprod 34(10):2071–2079. https://doi.org/10.1093/humrep/dez166
Martinez G et al (2020) Biallelic variants in MAATS1 encoding CFAP91, a calmodulin-associated and spoke-associated complex protein, cause severe astheno-teratozoospermia and male infertility. J Med Genet 57(10):708–716. https://doi.org/10.1136/jmedgenet-2019-106775
Article CAS PubMed Google Scholar
Shen Q et al (2021) Bi-allelic truncating variants in CFAP206 cause male infertility in human and mouse. Hum Genet 140(9):1367–1377. https://doi.org/10.1007/s00439-021-02313-z
Article CAS PubMed Google Scholar
Auguste Y et al (2018) Loss of calmodulin- and radial-spoke-associated complex protein CFAP251 leads to immotile spermatozoa lacking mitochondria and infertility in men. Am J Hum Genet 103(3):413–420. https://doi.org/10.1016/j.ajhg.2018.07.013
Comments (0)