Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res Clin Pract 157:107843
Jia G, DeMarco VG, Sowers JR (2016) Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol 12:144–153
Article CAS PubMed Google Scholar
Seferović PM, Paulus WJ, Rosano G, Polovina M, Petrie MC, Jhund PS, Tschöpe C, Sattar N, Piepoli M, Papp Z, Standl E, Mamas MA, Valensi P, Linhart A, Lalić N, Ceriello A, Döhner W, Ristić A, Milinković I, Seferović J, Cosentino F, Metra M, Coats AJS (2024) Diabetic myocardial disorder. A clinical consensus statement of the heart failure association of the ESC and the ESC working group on myocardial & pericardial diseases. Eur J of Heart Fail 26:1893–1903
Bugger H, Abel ED (2014) Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 57:660–671
Article CAS PubMed PubMed Central Google Scholar
Jia G, Whaley-Connell A, Sowers JR (2018) Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia 61:21–28
Article CAS PubMed Google Scholar
Xie S, Liu S, Zhang T, Shi W, Xing Y, Fang W, Zhang M, Chen M-Y, Xu S, Fan M, Li L, Zhang H, Zhao N, Zeng Z, Chen S, Zeng X, Deng W, Tang Q (2024) USP28 serves as a key suppressor of mitochondrial morphofunctional defects and cardiac dysfunction in the diabetic heart. Circulation 149:684–706
Article CAS PubMed Google Scholar
Jin L, Geng L, Ying L, Shu L, Ye K, Yang R, Liu Y, Wang Y, Cai Y, Jiang X, Wang Q, Yan X, Liao B, Liu J, Duan F, Sweeney G, Woo CWH, Wang Y, Xia Z, Lian Q, Xu A (2022) FGF21–sirtuin 3 axis confers the protective effects of exercise against diabetic cardiomyopathy by governing mitochondrial integrity. Circulation 146:1537–1557
Article CAS PubMed Google Scholar
Vercellino I, Sazanov LA (2022) The assembly, regulation and function of the mitochondrial respiratory chain. Nat Rev Mol Cell Biol 23:141–161
Article CAS PubMed Google Scholar
Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED (2021) Cardiac energy metabolism in heart failure. Circ Res 128:1487–1513
Article CAS PubMed PubMed Central Google Scholar
Dhillon S (2019) Dapagliflozin: a review in type 2 diabetes. Drugs 79:1135–1146
Article CAS PubMed PubMed Central Google Scholar
Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Ruff CT, Gause-Nilsson IAM, Fredriksson M, Johansson PA, Langkilde A-M, Sabatine MS (2019) Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 380:347–357
Article CAS PubMed Google Scholar
McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Bělohlávek J, Böhm M, Chiang C-E, Chopra VK, De Boer RA, Desai AS, Diez M, Drozdz J, Dukát A, Ge J, Howlett JG, Katova T, Kitakaze M, Ljungman CEA, Merkely B, Nicolau JC, O’Meara E, Petrie MC, Vinh PN, Schou M, Tereshchenko S, Verma S, Held C, DeMets DL, Docherty KF, Jhund PS, Bengtsson O, Sjöstrand M, Langkilde A-M (2019) Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 381:1995–2008
Article CAS PubMed Google Scholar
Solomon SD, McMurray JJV, Claggett B, De Boer RA, DeMets D, Hernandez AF, Inzucchi SE, Kosiborod MN, Lam CSP, Martinez F, Shah SJ, Desai AS, Jhund PS, Belohlavek J, Chiang C-E, Borleffs CJW, Comin-Colet J, Dobreanu D, Drozdz J, Fang JC, Alcocer-Gamba MA, Al Habeeb W, Han Y, Cabrera Honorio JW, Janssens SP, Katova T, Kitakaze M, Merkely B, O’Meara E, Saraiva JFK, Tereshchenko SN, Thierer J, Vaduganathan M, Vardeny O, Verma S, Pham VN, Wilderäng U, Zaozerska N, Bachus E, Lindholm D, Petersson M, Langkilde AM (2022) Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N Engl J Med 387:1089–1098
Goettsch C, Kjolby M, Aikawa E (2018) Sortilin and its multiple roles in cardiovascular and metabolic diseases. Arterioscler Thromb Vasc Biol 38:19–25
Article CAS PubMed Google Scholar
Shi J, Kandror KV (2005) Sortilin is essential and sufficient for the formation of Glut4 storage vesicles in 3T3-L1 adipocytes. Dev Cell 9:99–108
Article CAS PubMed Google Scholar
Iqbal F, Schlotter F, Becker-Greene D, Lupieri A, Goettsch C, Hutcheson JD, Rogers MA, Itoh S, Halu A, Lee LH, Blaser MC, Mlynarchik AK, Hagita S, Kuraoka S, Chen HY, Engert JC, Passos LSA, Jha PK, Osborn EA, Jaffer FA, Body SC, Robson SC, Thanassoulis G, Aikawa M, Singh SA, Sonawane AR, Aikawa E (2023) Sortilin enhances fibrosis and calcification in aortic valve disease by inducing interstitial cell heterogeneity. Eur Heart J 44:885–898
Article CAS PubMed PubMed Central Google Scholar
Patel KM, Strong A, Tohyama J, Jin X, Morales CR, Billheimer J, Millar J, Kruth H, Rader DJ (2015) Macrophage sortilin promotes LDL uptake, foam cell formation, and atherosclerosis. Circ Res 116:789–796
Article CAS PubMed PubMed Central Google Scholar
Feng W, Lei T, Wang Y, Feng R, Yuan J, Shen X, Wu Y, Gao J, Ding W, Lu Z (2019) GCN2 deficiency ameliorates cardiac dysfunction in diabetic mice by reducing lipotoxicity and oxidative stress. Free Radical Biol Med 130:128–139
Zhan J, Jin K, Xie R, Fan J, Tang Y, Chen C, Li H, Wang DW (2024) Ago2 protects against diabetic cardiomyopathy by activating mitochondrial gene translation. Circulation 149:1102–1120
Su H, Yuan Y, Wang X-M, Lau WB, Wang Y, Wang X, Gao E, Koch WJ, Ma X-L (2013) Inhibition of CTRP9, a novel and cardiac-abundantly expressed cell survival molecule, by TNFα-initiated oxidative signaling contributes to exacerbated cardiac injury in diabetic mice. Basic Res Cardiol 108:315
Lu F, Li E, Gao Y, Zhang Y, Kong L, Yang X (2025) Dapagliflozin modulates hepatic lipid metabolism through the proprotein convertase subtilisin/kexin type 9/low density lipoprotein receptor pathway. Diabetes Obes Metab 27:2096–2109
Pfanner N, Warscheid B, Wiedemann N (2019) Mitochondrial protein organization: from biogenesis to networks and function. Nat Rev Mol Cell Biol 20:267–284
Article CAS PubMed PubMed Central Google Scholar
Willems PHGM, Rossignol R, Dieteren CEJ, Murphy MP, Koopman WJH (2015) Redox homeostasis and mitochondrial dynamics. Cell Metab 22:207–218
Article CAS PubMed Google Scholar
Beg MA, Huang M, Vick L, Rao KNS, Zhang J, Chen Y (2024) Targeting mitochondrial dynamics and redox regulation in cardiovascular diseases. Trends Pharmacol Sci 45:290–303
Article CAS PubMed PubMed Central Google Scholar
Gustafsen C, Kjolby M, Nyegaard M, Mattheisen M, Lundhede J, Buttenschøn H, Mors O, Bentzon JF, Madsen P, Nykjaer A, Glerup S (2014) The hypercholesterolemia-risk gene SORT1 facilitates PCSK9 secretion. Cell Metab 19:310–318
Article CAS PubMed Google Scholar
Yang M, Ge J, Liu Y-L, Wang H-Y, Wang Z-H, Li D-P, He R, Xie Y-Y, Deng H-Y, Peng X-M, Wang W-S, Liu J-D, Zhu Z-Z, Yu X-F, Maretich P, Kajimura S, Pan R-P, Chen Y (2024) Sortilin-mediated translocation of mitochondrial ACSL1 impairs adipocyte thermogenesis and energy expenditure in male mice. Nat Commun 15:7746
Article CAS PubMed PubMed Central Google Scholar
Conlon DM, Schneider CV, Ko Y-A, Rodrigues A, Guo K, Hand NJ, Rader DJ (2022) Sortilin restricts secretion of apolipoprotein B-100 by hepatocytes under stressed but not basal conditions. J Clin Invest 132:e144334
Article CAS PubMed PubMed Central Google Scholar
Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148:1145–1159
Article CAS PubMed PubMed Central Google Scholar
Da Dalt L, Cabodevilla AG, Goldberg IJ, Norata GD (2023) Cardiac lipid metabolism, mitochondrial function, and heart failure. Cardiovasc Res 119:1905–1914
Article PubMed PubMed Central Google Scholar
Brown DA, O’Rourke B (2010) Cardiac mitochondria and arrhythmias. Cardiovasc Res 88:241–249
Article CAS PubMed PubMed Central Google Scholar
Zhang C, Cheng Y, Liu D, Liu M, Cui H, Zhang B, Mei Q, Zhou S (2019) Mitochondria-targeted cyclosporin A delivery system to treat myocardial ischemia reperfusion injury of rats. J Nanobiotechnol 17:18
Comments (0)