Courtine G, Sofroniew MV (2019) Spinal cord repair: advances in biology and technology. Nat Med 25:898–908. https://doi.org/10.1038/s41591-019-0475-6
Article CAS PubMed Google Scholar
Lorach H, Galvez A, Spagnolo V, Martel F, Karakas S, Intering N, Vat M, Faivre O, Harte C, Komi S et al (2023) Walking naturally after spinal cord injury using a brain–spine interface. Nature 618:126–133. https://doi.org/10.1038/s41586-023-06094-5
Article CAS PubMed PubMed Central Google Scholar
Schwartz M, Yoles E (2006) Immune-based therapy for spinal cord repair: autologous macrophages and beyond. J Neurotrauma 23:360–370. https://doi.org/10.1089/neu.2006.23.360
Chernykh ER, Shevela EY, Starostina NM, Morozov SA, Davydova MN, Menyaeva EV, Ostanin AA (2016) Safety and therapeutic potential of M2 macrophages in stroke treatment. Cell Transpl 25:1461–1471. https://doi.org/10.3727/096368915X690279
Liao J, Zhang M, Shi Z, Lu H, Wang L, Fan W, Tong X, Yan H (2023) Improving the function of meningeal lymphatic vessels to promote brain edema absorption after traumatic brain injury. J Neurotrauma 40:383–394. https://doi.org/10.1089/neu.2022.0150
Salvador AFM, Dykstra T, Rustenhoven J, Gao W, Blackburn SM, Bhasiin K, Dong MQ, Guimaraes RM, Gonuguntla S, Smirnov I et al (2023) Age-dependent immune and lymphatic responses after spinal cord injury. Neuron 111:2155-2169 e2159. https://doi.org/10.1016/j.neuron.2023.04.011
Article CAS PubMed Google Scholar
Jacob L, Boisserand LSB, Geraldo LHM, de Brito Neto J, Mathivet T, Antila S, Barka B, Xu Y, Thomas JM, Pestel J et al (2019) Anatomy and function of the vertebral column lymphatic network in mice. Nat Commun 10:4594. https://doi.org/10.1038/s41467-019-12568-w
Article CAS PubMed PubMed Central Google Scholar
Antila S, Karaman S, Nurmi H, Airavaara M, Voutilainen MH, Mathivet T, Chilov D, Li Z, Koppinen T, Park JH et al (2017) Development and plasticity of meningeal lymphatic vessels. J Exp Med 214:3645–3667. https://doi.org/10.1084/jem.20170391
Article CAS PubMed PubMed Central Google Scholar
Louveau A, Herz J, Alme MN, Salvador AF, Dong MQ, Viar KE, Herod SG, Knopp J, Setliff JC, Lupi AL et al (2018) CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci 21:1380–1391. https://doi.org/10.1038/s41593-018-0227-9
Article CAS PubMed PubMed Central Google Scholar
Escobedo N, Oliver G (2016) Lymphangiogenesis: origin, specification, and cell fate determination. Annu Rev Cell Dev Biol 32:677–691. https://doi.org/10.1146/annurev-cellbio-111315-124944
Article CAS PubMed Google Scholar
Liu X, Uemura A, Fukushima Y, Yoshida Y, Hirashima M (2016) Semaphorin 3G provides a repulsive guidance cue to lymphatic endothelial cells via neuropilin-2/plexinD1. Cell Rep 17:2299–2311. https://doi.org/10.1016/j.celrep.2016.11.008
Article CAS PubMed Google Scholar
Mahadevan A, Welsh IC, Sivakumar A, Gludish DW, Shilvock AR, Noden DM, Huss D, Lansford R, Kurpios NA (2014) The left-right Pitx2 pathway drives organ-specific arterial and lymphatic development in the intestine. Dev Cell 31:690–706. https://doi.org/10.1016/j.devcel.2014.11.002
Article CAS PubMed PubMed Central Google Scholar
Sabin FR (1909) The lymphatic system in human embryos, with a consideration of the morphology of the system as a whole. Am J Anat 9:43–91. https://doi.org/10.1002/aja.1000090104
Oliver G (2004) Lymphatic vasculature development. Nat Rev Immunol 4:35–45. https://doi.org/10.1038/nri1258
Article CAS PubMed Google Scholar
Izen RM, Yamazaki T, Nishinaka-Arai Y, Hong YK, Mukouyama YS (2018) Postnatal development of lymphatic vasculature in the brain meninges. Dev Dyn 247:741–753. https://doi.org/10.1002/dvdy.24624
Article CAS PubMed PubMed Central Google Scholar
Balint L, Ocskay Z, Deak BA, Aradi P, Jakus Z (2019) Lymph flow induces the postnatal formation of mature and functional meningeal lymphatic vessels. Front Immunol 10:3043. https://doi.org/10.3389/fimmu.2019.03043
Article CAS PubMed Google Scholar
Xu H, Fame RM, Sadegh C, Sutin J, Naranjo C, Della S, Cui J, Shipley FB, Vernon A, Gao F et al (2021) Choroid plexus NKCC1 mediates cerebrospinal fluid clearance during mouse early postnatal development. Nat Commun 12:447. https://doi.org/10.1038/s41467-020-20666-3
Article CAS PubMed PubMed Central Google Scholar
Petrova TV, Koh GY (2020) Biological functions of lymphatic vessels. Science. https://doi.org/10.1126/science.aax4063
Cohen M, Giladi A, Raposo C, Zada M, Li B, Ruckh J, Deczkowska A, Mohar B, Shechter R, Lichtenstein RG et al (2021) Meningeal lymphoid structures are activated under acute and chronic spinal cord pathologies. Life Sci Alliance. https://doi.org/10.26508/lsa.202000907
Nurmi H, Saharinen P, Zarkada G, Zheng W, Robciuc MR, Alitalo K (2015) VEGF-C is required for intestinal lymphatic vessel maintenance and lipid absorption. EMBO Mol Med 7:1418–1425. https://doi.org/10.15252/emmm.201505731
Article CAS PubMed PubMed Central Google Scholar
Suh SH, Choe K, Hong SP, Jeong SH, Makinen T, Kim KS, Alitalo K, Surh CD, Koh GY, Song JH (2019) Gut microbiota regulates lacteal integrity by inducing VEGF-C in intestinal villus macrophages. EMBO Rep. https://doi.org/10.15252/embr.201846927
Article PubMed PubMed Central Google Scholar
Gordon EJ, Rao S, Pollard JW, Nutt SL, Lang RA, Harvey NL (2010) Macrophages define dermal lymphatic vessel calibre during development by regulating lymphatic endothelial cell proliferation. Development 137:3899–3910. https://doi.org/10.1242/dev.050021
Article CAS PubMed PubMed Central Google Scholar
Ivanov S, Scallan JP, Kim KW, Werth K, Johnson MW, Saunders BT, Wang PL, Kuan EL, Straub AC, Ouhachi M et al (2016) CCR7 and IRF4-dependent dendritic cells regulate lymphatic collecting vessel permeability. J Clin Invest 126:1581–1591. https://doi.org/10.1172/JCI84518
Article PubMed PubMed Central Google Scholar
Merlini A, Haberl M, Strauss J, Hildebrand L, Genc N, Franz J, Chilov D, Alitalo K, Flugel-Koch C, Stadelmann C et al (2022) Distinct roles of the meningeal layers in CNS autoimmunity. Nat Neurosci 25:887–899. https://doi.org/10.1038/s41593-022-01108-3
Article CAS PubMed Google Scholar
Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG, Leung BP, Lelios I, Heppner FL, Kipnis J, Merkler D et al (2018) High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48:599. https://doi.org/10.1016/j.immuni.2018.02.014
Article CAS PubMed Google Scholar
Rustenhoven J, Drieu A, Mamuladze T, de Lima KA, Dykstra T, Wall M, Papadopoulos Z, Kanamori M, Salvador AF, Baker W et al (2021) Functional characterization of the dural sinuses as a neuroimmune interface. Cell 184:1000-1016 e1027. https://doi.org/10.1016/j.cell.2020.12.040
Article CAS PubMed PubMed Central Google Scholar
Li X, Qi L, Yang D, Hao S, Zhang F, Zhu X, Sun Y, Chen C, Ye J, Yang J et al (2022) Meningeal lymphatic vessels mediate neurotropic viral drainage from the central nervous system. Nat Neurosci 25:577–587. https://doi.org/10.1038/s41593-022-01063-z
Article CAS PubMed Google Scholar
Rebejac J, Eme-Scolan E, Arnaud Paroutaud L, Kharbouche S, Teleman M, Spinelli L, Gallo E, Roussel-Queval A, Zarubica A, Sansoni A et al (2022) Meningeal macrophages protect against viral neuroinfection. Immunity 55:2103-2117 e2110. https://doi.org/10.1016/j.immuni.2022.10.005
Article CAS PubMed Google Scholar
Song E, Mao T, Dong H, Boisserand LSB, Antila S, Bosenberg M, Alitalo K, Thomas JL, Iwasaki A (2020) VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature 577:689–694. https://doi.org/10.1038/s41586-019-1912-x
Article CAS PubMed PubMed Central Google Scholar
Bolte AC, Dutta AB, Hurt ME, Smirnov I, Kovacs MA, McKee CA, Ennerfelt HE, Shapiro D, Nguyen BH, Frost EL et al (2020) Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nat Commun 11:4524. https://doi.org/10.1038/s41467-020-18113-4
Article CAS PubMed PubMed Central Google Scholar
Salvador AF, de Lima KA, Kipnis J (2021) Neuromodulation by the immune system: a focus on cytokines. Nat Rev Immunol 21:526–541. https://doi.org/10.1038/s41577-021-00508-z
Article CAS PubMed Google Scholar
Drieu A, Du S, Storck SE, Rustenhoven J, Papadopoulos Z, Dykstra T, Zhong F, Kim K, Blackburn S, Mamuladze T et al (2022) Parenchymal border macrophages regulate the flow dynamics of the cerebrospinal fluid. Nature 611:585–593. https://doi.org/10.1038/s41586-022-05397-3
Comments (0)