Cleveland DW, Mao Y, Sullivan KF (2003) Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112(4):407–421. https://doi.org/10.1016/s0092-8674(03)00115-6
Article CAS PubMed Google Scholar
Pollard TD (2017) Nine unanswered questions about cytokinesis. J Cell Biol 216(10):3007–163. https://doi.org/10.1083/jcb.201612068
Article CAS PubMed PubMed Central Google Scholar
Prosser SL, Pelletier L (2017) Mitotic spindle assembly in animal cells: a fine balancing act. Nat Rev Mol Cell Biol 18(3):187–201. https://doi.org/10.1038/nrm.2016.162
Article CAS PubMed Google Scholar
Forth S, Kapoor TM (2017) The mechanics of microtubule networks in cell division. J Cell Biol 216(6):1525–1531. https://doi.org/10.1083/jcb.201612064
Article CAS PubMed PubMed Central Google Scholar
Flemming W (1891) Neue Beiträge zur Kenntnis der Zelle. Arch Mikrosk Anat 37:685–751
Skop AR, Liu H, Yates J 3rd, Meyer BJ, Heald R (2004) Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science 305(5680):61–66. https://doi.org/10.1126/science.1097931
Article CAS PubMed PubMed Central Google Scholar
Glotzer M (2005) The molecular requirements for cytokinesis. Science 307(5716):1735–1739. https://doi.org/10.1126/science.1096896
Article CAS PubMed Google Scholar
Barr FA, Gruneberg U (2007) Cytokinesis: placing and making the final cut. Cell 131(5):847–860. https://doi.org/10.1016/j.cell.2007.11.011
Article CAS PubMed Google Scholar
Normand G, King RW (2010) Understanding cytokinesis failure. Adv Exp Med Biol 676:27–55. https://doi.org/10.1007/978-1-4419-6199-0_3
Article CAS PubMed PubMed Central Google Scholar
Capalbo L, Bassi ZI, Geymonat M, Todesca S, Copoiu L, Enright AJ et al (2019) The midbody interactome reveals unexpected roles for PP1 phosphatases in cytokinesis. Nat Commun 10(1):4513. https://doi.org/10.1038/s41467-019-12507-9
Article CAS PubMed PubMed Central Google Scholar
Hu CK, Coughlin M, Mitchison TJ (2012) Midbody assembly and its regulation during cytokinesis. Mol Biol Cell 23(6):1024–1034. https://doi.org/10.1091/mbc.E11-08-0721
Article CAS PubMed PubMed Central Google Scholar
Petsalaki E, Zachos G (2021) The abscission checkpoint: a guardian of chromosomal stability. Cells 10(12):3350. https://doi.org/10.3390/cells10123350
Article CAS PubMed PubMed Central Google Scholar
Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396(6712):643–649. https://doi.org/10.1038/25292
Article CAS PubMed Google Scholar
Burrell RA, McGranahan N, Bartek J, Swanton C (2013) The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501(7467):338–345. https://doi.org/10.1038/nature12625
Article CAS PubMed Google Scholar
Ben-David U, Amon A (2020) Context is everything: aneuploidy in cancer. Nat Rev Genet 21(1):44–62. https://doi.org/10.1038/s41576-019-0171-x
Article CAS PubMed Google Scholar
Lens SMA, Medema RH (2019) Cytokinesis defects and cancer. Nat Rev Cancer 19(1):32–45. https://doi.org/10.1038/s41568-018-0084-6
Article CAS PubMed Google Scholar
Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D (2005) Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437(7061):1043–1047. https://doi.org/10.1038/nature04217
Article CAS PubMed Google Scholar
Caldwell CM, Green RA, Kaplan KB (2007) APC mutations lead to cytokinetic failures in vitro and tetraploid and tetraploid genotypes in Min mice. J Cell Biol 178(7):1109–1120. https://doi.org/10.1083/jcb.200703186
Article CAS PubMed PubMed Central Google Scholar
Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304. https://doi.org/10.1146/annurev.biochem.77.062706.153223
Article CAS PubMed Google Scholar
Scacchetti A, Schauer T, Reim A, Apostolou Z, Campos Sparr A, Krause S, Heun P, Wierer M, Becker PB (2020) Drosophila SWR1 and NuA4 complexes are defined by DOMINO isoforms. Elife 9:e56325. https://doi.org/10.7554/eLife.56325
Article CAS PubMed PubMed Central Google Scholar
Mayes K, Qiu Z, Alhazmi A, Landry JW (2014) ATP-dependent chromatin remodeling complexes as novel targets for cancer therapy. Adv Cancer Res 121:183–233. https://doi.org/10.1016/B978-0-12-800249-0.00005-6
Article PubMed PubMed Central Google Scholar
Meng L, Wang X, Liao W, Liu J, Liao Y, He Q (2017) BAF53a is a potential prognostic biomarker and promotes invasion and epithelial-mesenchymal transition of glioma cells. Oncol Rep 38(6):3327–3334. https://doi.org/10.3892/or.2017.6019
Article CAS PubMed PubMed Central Google Scholar
Micci F, Panagopoulos I, Bjerkehagen B, Heim S (2006) Consistent rearrangement of chromosomal band 6p21 with generation of fusion genes JAZF1/PHF1 and EPC1/PHF1 in endometrial stromal sarcoma. Can Res 66(1):107–112. https://doi.org/10.1158/0008-5472.CAN-05-2485
Nakahata S, Saito Y, Hamasaki M, Hidaka T, Arai Y, Taki T, Taniwaki M, Morishita K (2009) Alteration of enhancer of polycomb 1 at 10p11.2 is one of the genetic events leading to development of adult T-cell leukemia/lymphoma. Genes Chromosomes Cancer 48(9):768–776. https://doi.org/10.1002/gcc.20681
Article CAS PubMed Google Scholar
Huang X, Spencer GJ, Lynch JT, Ciceri F, Somerville TD, Somervaille TC (2014) Enhancers of Polycomb EPC1 and EPC2 sustain the oncogenic potential of MLL leukemia stem cells. Leukemia 28(5):1081–1091. https://doi.org/10.1038/leu.2013.316
Article CAS PubMed Google Scholar
Munnia A, Schutz N, Romeike BF, Maldener E, Glass B, Maas R, Nastainczyk W, Feiden W, Fischer U, Meese E (2001) Expression, cellular distribution and protein binding of the glioma amplified sequence (GAS41), a highly conserved putative transcription factor. Oncogene 20(35):4853–4863. https://doi.org/10.1038/sj.onc.1204650
Article CAS PubMed Google Scholar
Park JH, Roeder RG (2006) GAS41 is required for repression of the p53 tumor suppressor pathway during normal cellular proliferation. Mol Cell Biol 26(11):4006–4016. https://doi.org/10.1128/MCB.02185-05
Article CAS PubMed PubMed Central Google Scholar
Yamaguchi K, Sakai M, Shimokawa T, Yamada Y, Nakamura Y, Furukawa Y (2010) C20orf20 (MRG-binding protein) as a potential therapeutic target for colorectal cancer. Br J Cancer 102(2):325–331. https://doi.org/10.1038/sj.bjc.6605500
Article CAS PubMed PubMed Central Google Scholar
Mattera L, Escaffit F, Pillaire MJ, Selves J, Tyteca S, Hoffmann JS, Gourraud PA, Chevillard-Briet M, Cazaux C, Trouche D (2009) The p400/Tip60 ratio is critical for colorectal cancer cell proliferation through DNA damage response pathways. Oncogene 28(12):1506–1517. https://doi.org/10.1038/onc.2008.499
Article CAS PubMed Google Scholar
Huber O, Menard L, Haurie V, Nicou A, Taras D, Rosenbaum J (2008) Pontin and reptin, two related ATPases with multiple roles in cancer. Can Res 68(17):6873–6876. https://doi.org/10.1158/0008-5472.CAN-08-0547
Grigoletto A, Lestienne P, Rosenbaum J (2011) The multifaceted proteins Reptin and Pontin as major players in cancer. Biochem Biophys Acta 1815(2):147–157. https://doi.org/10.1016/j.bbcan.2010.11.002
Article CAS PubMed Google Scholar
Zhang J, Vlasevska S, Wells VA, Nataraj S, Holmes AB, Duval R, Meyer SN, Mo T, Basso K, Brindle PK et al (2017) The CREBBP acetyltransferase is a haploinsufficient tumor suppressor in B-cell mphoma. Cancer Discov 7(3):322–337. https://doi.org/10.1158/2159-8290.CD-16-1417
Article CAS PubMed PubMed Central Google Scholar
Slupianek A, Yerrum S, Safadi FF, Monroy MA (2010) The chromatin remodeling factor SRCAP modulates expression of prostate specific antigen and cellular proliferation in prostate cancer cells. J Cell Physiol 224(2):369–375. https://doi.org/10.1002/jcp.22132
Comments (0)