Schreiber V, Ame JC, Dolle P, Schultz I, Rinaldi B, Fraulob V, Menissier-de Murcia J, de Murcia G (2002) Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem 277:23028–23036. https://doi.org/10.1074/jbc.M202390200
Article PubMed CAS Google Scholar
Riccio AA, Cingolani G, Pascal JM (2016) PARP-2 domain requirements for DNA damage-dependent activation and localization to sites of DNA damage. Nucleic Acids Res 44:1691–1702. https://doi.org/10.1093/nar/gkv1376
Kutuzov MM, Khodyreva SN, Ame JC, Ilina ES, Sukhanova MV, Schreiber V, Lavrik OI (2013) Interaction of PARP-2 with DNA structures mimicking DNA repair intermediates and consequences on activity of base excision repair proteins. Biochimie 95:1208–1215. https://doi.org/10.1016/j.biochi.2013.01.007
Article PubMed CAS Google Scholar
Vasil’eva I, Moor N, Anarbaev R, Kutuzov M, Lavrik O (2021) Functional roles of PARP2 in assembling protein-protein complexes involved in base excision DNA repair. Int J Mol Sci 22:4679. https://doi.org/10.3390/ijms22094679
Kurgina TA, Moor NA, Kutuzov MM, Naumenko KN, Ukraintsev AA, Lavrik OI (2021) Dual function of HPF1 in the modulation of PARP1 and PARP2 activities. Commun Biol 4:1259. https://doi.org/10.1038/s42003-021-02780-0
Article PubMed PubMed Central CAS Google Scholar
Hoch NC, Polo LM (2019) ADP-ribosylation: from molecular mechanisms to human disease. Genet Mol Biol 43:e20190075. https://doi.org/10.1590/1678-4685-GMB-2019-0075
Article PubMed PubMed Central Google Scholar
Maluchenko NV, Koshkina DO, Feofanov AV, Studitsky VM, Kirpichnikov MP (2021) Poly(ADP-Ribosyl) code functions. Acta Naturae 13:58–69. https://doi.org/10.32607/actanaturae.11089
Article PubMed PubMed Central CAS Google Scholar
Navarro J, Gozalbo-Lopez B, Mendez AC, Dantzer F, Schreiber V, Martinez C, Arana DM, Farres J, Revilla-Nuin B, Bueno MF et al (2017) PARP-1/PARP-2 double deficiency in mouse T cells results in faulty immune responses and T lymphomas. Sci Rep 7:41962. https://doi.org/10.1038/srep41962
Article PubMed PubMed Central CAS Google Scholar
Morganti S, Marra A, De Angelis C, Toss A, Licata L, Giugliano F, Taurelli Salimbeni B, Giachetti B, Esposito PPM, Giordano A, A. et al (2024) PARP inhibitors for breast Cancer treatment: A review. JAMA Oncol 10:658–670. https://doi.org/10.1001/jamaoncol.2023.7322
Slade D (2020) PARP and PARG inhibitors in cancer treatment. Genes Dev 34:360–394. https://doi.org/10.1101/gad.334516.119
Article PubMed PubMed Central CAS Google Scholar
Langelier MF, Lin X, Zha S, Pascal JM (2023) Clinical PARP inhibitors allosterically induce PARP2 retention on DNA. Sci Adv 9:eadf7175. https://doi.org/10.1126/sciadv.adf7175
Article PubMed PubMed Central CAS Google Scholar
Wang C, Li J (2021) Haematologic toxicities with PARP inhibitors in cancer patients: an up-to-date meta-analysis of 29 randomized controlled trials. J Clin Pharm Ther 46:571–584. https://doi.org/10.1111/jcpt.13349
Article PubMed CAS Google Scholar
Nindra U, Hong JH, Balakrishnar B, Pal A, Chua W (2023) Review of toxicities of PARP inhibitors in metastatic castrate resistant prostate Cancer. Clin Genitourin Cancer 21:183–193. https://doi.org/10.1016/j.clgc.2022.07.005
Maiorano BA, De Giorgi U, Verzoni E, Maiello E, Procopio G, Conteduca V, Di Maio M, Meet, U.R.O.g (2024) Hematological toxicity of PARP inhibitors in metastatic prostate Cancer patients with mutations of BRCA or HRR genes: A systematic review and safety Meta-analysis. Target Oncol 19:1–11. https://doi.org/10.1007/s11523-023-01016-x
Shu Y, Ding Y, He X, Liu Y, Wu P, Zhang Q (2023) Hematological toxicities in PARP inhibitors: A real-world study using FDA adverse event reporting system (FAERS) database. Cancer Med 12:3365–3375. https://doi.org/10.1002/cam4.5062
Article PubMed CAS Google Scholar
Lin X, Gupta D, Vaitsiankova A, Bhandari SK, Leung KSK, Menolfi D, Lee BJ, Russell HR, Gershik S, Huang X et al (2024) Inactive Parp2 causes Tp53-dependent lethal anemia by blocking replication-associated Nick ligation in erythroblasts. Mol Cell 84:3916–3931e3917. https://doi.org/10.1016/j.molcel.2024.09.020
Article PubMed CAS Google Scholar
Valabrega G, Scotto G, Tuninetti V, Pani A, Scaglione F (2021) Differences in PARP inhibitors for the treatment of ovarian cancer: mechanisms of action, pharmacology, safety, and efficacy. Int J Mol Sci 22:4203. https://doi.org/10.3390/ijms22084203
Illuzzi G, Staniszewska AD, Gill SJ, Pike A, McWilliams L, Critchlow SE, Cronin A, Fawell S, Hawthorne G, Jamal K et al (2022) Preclinical characterization of AZD5305, A Next-Generation, highly selective PARP1 inhibitor and trapper. Clin cancer Research: Official J Am Association Cancer Res 28:4724–4736. https://doi.org/10.1158/1078-0432.CCR-22-0301
Dantzer F, Mark M, Quenet D, Scherthan H, Huber A, Liebe B, Monaco L, Chicheportiche A, Sassone-Corsi P, de Murcia G et al (2006) Poly(ADP-ribose) polymerase-2 contributes to the fidelity of male meiosis I and spermiogenesis. Proc Natl Acad Sci U S A 103:14854–14859. https://doi.org/10.1073/pnas.0604252103
Article PubMed PubMed Central CAS Google Scholar
Bai P, Houten SM, Huber A, Schreiber V, Watanabe M, Kiss B, de Murcia G, Auwerx J, Menissier-de Murcia J (2007) Poly(ADP-ribose) polymerase-2 [corrected] controls adipocyte differentiation and adipose tissue function through the regulation of the activity of the retinoid X receptor/peroxisome proliferator-activated receptor-gamma [corrected] heterodimer. J Biol Chem 282:37738–37746. https://doi.org/10.1074/jbc.M701021200
Article PubMed CAS Google Scholar
Yelamos J, Monreal Y, Saenz L, Aguado E, Schreiber V, Mota R, Fuente T, Minguela A, Parrilla P, de Murcia G et al (2006) PARP-2 deficiency affects the survival of CD4 + CD8 + double-positive thymocytes. EMBO J 25:4350–4360. https://doi.org/10.1038/sj.emboj.7601301
Article PubMed PubMed Central CAS Google Scholar
Soni UK, Chadchan SB, Joshi A, Kumar V, Maurya VK, Verma RK, Jha RK (2020) Poly(ADP-ribose) polymerase-2 is essential for endometrial receptivity and blastocyst implantation, and regulated by caspase-8. Mol Cell Endocrinol 518:110946. https://doi.org/10.1016/j.mce.2020.110946
Article PubMed CAS Google Scholar
Eisemann T, Pascal JM (2020) Poly(ADP-ribose) polymerase enzymes and the maintenance of genome integrity. Cell Mol Life Sci 77:19–33. https://doi.org/10.1007/s00018-019-03366-0
Article PubMed CAS Google Scholar
Langelier MF, Riccio AA, Pascal JM (2014) PARP-2 and PARP-3 are selectively activated by 5’ phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1. Nucleic Acids Res 42:7762–7775. https://doi.org/10.1093/nar/gku474
Article PubMed PubMed Central CAS Google Scholar
Obaji E, Haikarainen T, Lehtio L (2018) Structural basis for DNA break recognition by ARTD2/PARP2. Nucleic Acids Res 46:12154–12165. https://doi.org/10.1093/nar/gky927
Article PubMed PubMed Central CAS Google Scholar
Obaji E, Haikarainen T, Lehtio L (2016) Characterization of the DNA dependent activation of human ARTD2/PARP2. Sci Rep 6:34487. https://doi.org/10.1038/srep34487
Article PubMed PubMed Central CAS Google Scholar
Ali SO, Khan FA, Galindo-Campos MA, Yelamos J (2016) Understanding specific functions of PARP-2: new lessons for cancer therapy. Am J cancer Res 6:1842–1863
PubMed PubMed Central CAS Google Scholar
Kutuzov MM, Belousova EA, Kurgina TA, Ukraintsev AA, Vasil’eva IA, Khodyreva SN, Lavrik OI (2021) The contribution of PARP1, PARP2 and poly(ADP-ribosyl)ation to base excision repair in the nucleosomal context. Sci Rep 11:4849. https://doi.org/10.1038/s41598-021-84351-1
Comments (0)