Raloxifene encapsulated spanlastic nanogel for the prevention of bone fracture risk via transdermal administration: Pharmacokinetic and efficacy study in animal model

Sozen T, Ozisik L, Calik BN. An overview and management of osteoporosis. Eur J Rheumatol. 2017;4:46–56.

Article  PubMed  Google Scholar 

Madruga LYC, Sabino RM, Santos ECG, Popat KC, Balaban R de C, Kipper MJ. Carboxymethyl-kappa-carrageenan: A study of biocompatibility, antioxidant and antibacterial activities. Int J Biol Macromol [Internet]. Elsevier B.V.; 2020;152:483–91. Available from: https://doi.org/10.1016/j.ijbiomac.2020.02.274.

Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. 2003;423:349–55.

CAS  Google Scholar 

Keshavarz A, Karimi-Sabet J, Fattahi A, Golzary A, Rafiee-Tehrani M, Dorkoosh FA. Preparation and characterization of raloxifene nanoparticles using Rapid Expansion of Supercritical Solution (RESS). J Supercrit Fluids [Internet]. Elsevier B.V.; 2012;63:169–79. Available from: https://doi.org/10.1016/j.supflu.2011.12.005.

Kanis JA, Cooper C, Rizzoli R, Reginster JY. Correction to: European guidance for the diagnosis and management of osteoporosis in postmenopausal women (Osteoporosis International, (2019), 30, 1, (3–44), https://doi.org/10.1007/s00198-018-4704-5). Osteoporos Int. 2020;31:209.

Gass M, Dawson-Hughes B. Preventing osteoporosis-related fractures: An overview. Am J Med. 2006;119:S3-11.

Article  PubMed  Google Scholar 

Khaled G, Hayley N, Fatemah B, Tara P, Sebastien T. Ac ce pt e d us. J Drug Target [Internet]. Taylor & Francis; 2019;0:000. Available from: https://doi.org/10.1080/1061186X.2019.1566341.

Saini D, Fazil M, Ali MM, Baboota S, Ameeduzzafar A, Ali J. Formulation, development and optimization of raloxifene-loaded chitosan nanoparticles for treatment of osteoporosis. Drug Deliv. 2015;22:823–36.

Article  CAS  PubMed  Google Scholar 

Turner S, Turner AS, Turner AS, Turner AS. Animal models of osteoporosis - necessity and limitations. 2001;

Burra M, Jukanti R, Yadav K, Sunkavalli S, Velpula A, Ampati S, et al. Enhanced intestinal absorption and bioavailability of raloxifene hydrochloride via lyophilized solid lipid nanoparticles. Adv Powder Technol [Internet]. The Society of Powder Technology Japan; 2013;24:393–402. Available from: https://doi.org/10.1016/j.apt.2012.09.002.

Fahmy AM, El-Setouhy DA, Habib BA, Tayel SA. Enhancement of Transdermal Delivery of Haloperidol via Spanlastic Dispersions: Entrapment Efficiency vs. Particle Size. AAPS PharmSciTech. 2019;20.

Kakkar S, Kaur IP. A novel nanovesicular carrier system to deliver drug topically. Pharm Dev Technol. 2013;18:673–85.

Article  CAS  PubMed  Google Scholar 

Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Duodenum-triggered delivery of pravastatin sodium via enteric surface-coated nanovesicular spanlastic dispersions: Development, characterization and pharmacokinetic assessments. Int J Pharm [Internet]. Elsevier B.V.; 2015;483:77–88. Available from: https://doi.org/10.1016/j.ijpharm.2015.02.012.

Mohanta P, Pandey NK, Kapoor DN, Singh SK, Sarvi Y, Sharma P. Development of surfactant-based nanocarrier system for delivery of an antifungal drug. J Pharm Res. 2017;11:1153.

CAS  Google Scholar 

Fahmy AM, El-setouhy DA, Ibrahim AB, Habib BA, Tayel SA, Bayoumi NA, et al. Penetration enhancer-containing spanlastics (PECSs) for transdermal delivery of haloperidol : in vitro characterization, ex vivo permeation and in vivo biodistribution studies. Drug Deliv. Informa Healthcare USA, Inc; 2018;0:12–22.

Ansari MD, khan I, Solanki P, Pandit J, Jahan RN, Aqil M, et al. Fabrication and optimization of raloxifene loaded spanlastics vesicle for transdermal delivery. J Drug Deliv Sci Technol [Internet]. Elsevier B.V.; 2022;68:103102. Available from: https://doi.org/10.1016/j.jddst.2022.103102.

Mahmood S, Mandal UK, Chatterjee B. Transdermal delivery of raloxifene HCl via ethosomal system: Formulation, advanced characterizations and pharmacokinetic evaluation. Int J Pharm. 2018;542:36–46.

Article  CAS  PubMed  Google Scholar 

Ansari MD, Ahmed S, Imam SS, Khan I, Singhal S, Sharma M, et al. CCD based development and characterization of nano-transethosome to augment the antidepressant effect of agomelatine on Swiss albino mice. J Drug Deliv Sci Technol [Internet]. Elsevier; 2019;54:101234. Available from: https://doi.org/10.1016/j.jddst.2019.101234.

Abidin L, Mujeeb M, Imam SS, Aqil M, Khurana D. Enhanced transdermal delivery of luteolin via non-ionic surfactant-based vesicle: Quality evaluation and anti-arthritic assessment. Drug Deliv. 2016;23:1079–84.

Article  PubMed  Google Scholar 

Ahmed S, Gull A, Alam M, Aqil M, Sultana Y. Ultrasonically tailored, chemically engineered and “QbD” enabled fabrication of agomelatine nanoemulsion; optimization, characterization, ex-vivo permeation and stability study. Ultrason - Sonochemistry. 2017.

Müller RH, Petersen RD, Hommoss A, Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev. 2007;59:522–30.

Article  PubMed  Google Scholar 

Ahmed S, Mahmood S, Danish M, Gull A, Sharma N. Nanostructured lipid carrier to overcome stratum corneum barrier for the delivery of agomelatine in rat brain ; formula optimization, characterization and brain distribution study. Int J Pharm [Internet]. Elsevier B.V.; 2021;607:121006. Available from: https://doi.org/10.1016/j.ijpharm.2021.121006.

Khuroo T, Verma D, Khuroo A, Ali A, Iqbal Z. Simultaneous delivery of paclitaxel and erlotinib from dual drug loaded PLGA nanoparticles: Formulation development, thorough optimization and in vitro release. J Mol Liq [Internet]. Elsevier B.V.; 2018;257:52–68. Available from: https://doi.org/10.1016/j.molliq.2018.02.091.

Waheed A, Aqil M, Ahad A, Imam SS, Moolakkadath T, Iqbal Z, et al. Improved bioavailability of raloxifene hydrochloride using limonene containing transdermal nano-sized vesicles. J Drug Deliv Sci Technol Elsevier. 2019;52:468–76.

Article  CAS  Google Scholar 

Mirza MA, Talegaonkar S, Iqbal Z. Quantitative analysis of itraconazole in bulk, marketed, and nano formulation by validated, stability indicating high performance thin layer chromatography. J Liq Chromatogr Relat Technol. 2012;35:1459–80.

Article  CAS  Google Scholar 

Pandit J, Garg M, Jain NK. Miconazole nitrate bearing ultraflexible liposomes for the treatment of fungal infection. J Liposome Res. 2014;24:163–9.

Article  CAS  PubMed  Google Scholar 

Khuroo T, Verma D, Talegaonkar S, Padhi S, Panda AK, Iqbal Z. Topotecan-tamoxifen duple PLGA polymeric nanoparticles: Investigation of in vitro, in vivo and cellular uptake potential. Int J Pharm [Internet]. Elsevier B.V.; 2014;473:384–94. Available from: https://doi.org/10.1016/j.ijpharm.2014.07.022.

Mahtab A, Rizwanullah M, Pandey S, Leekha A, Rabbani SA, Verma AK, et al. Quality by design driven development and optimization of teriflunomide loaded nanoliposomes for treatment of rheumatoid arthritis: An in vitro and in vivo assessments. J Drug Deliv Sci Technol [Internet]. Elsevier; 2019;51:383–96. Available from: https://doi.org/10.1016/j.jddst.2019.03.008.

Shahab MS, Rizwanullah M, Alshehri S, Imam SS. Optimization to development of chitosan decorated polycaprolactone nanoparticles for improved ocular delivery of dorzolamide: In vitro, ex vivo and toxicity assessments. Int J Biol Macromol [Internet]. Elsevier B.V.; 2020;163:2392–404. Available from: https://doi.org/10.1016/j.ijbiomac.2020.09.185.

Anzar N, Mirza MA, Anwer K, Khuroo T, Alshetaili AS, Alshahrani SM, et al. Preparation, evaluation and pharmacokinetic studies of spray dried PLGA polymeric submicron particles of simvastatin for the effective treatment of breast cancer. J Mol Liq [Internet]. Elsevier B.V; 2018;249:609–16. Available from: https://doi.org/10.1016/j.molliq.2017.11.081.

Ahmed S, Sarim Imam S, Zafar A, Ali A, Aqil M, Gull A. In vitro and preclinical assessment of factorial design based nanoethosomes transgel formulation of an opioid analgesic. Artif Cells, Nanomedicine Biotechnol. 2016;44:1793–802.

Article  CAS  Google Scholar 

Zakir F, Ahmad A, Farooq U, Mirza MA, Tripathi A, Singh D, et al. Design and development of a commercially viable in situ nanoemulgel for the treatment of postmenopausal osteoporosis. Nanomedicine. 2020;15:1167–87.

Article  CAS  PubMed  Google Scholar 

Tsuruoka S, Hasegawa G, Kaneda T, Maeda A, Fujimura A. Dosing Time-dependent effect of raloxifene on plasma fibrinogen concentration in ovariectomized rats. Chronobiol Int. 2008;25:808–18.

Article  CAS  PubMed  Google Scholar 

Laura V, Mattia F, Roberta G, Federico I, Emi D, Chiara T, et al. Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Drug Deliv [Internet]. Informa UK Limited, trading as Taylor & Francis Group; 2016;11:554–62. Available from: https://doi.org/10.1016/j.chemphyslip.2013.07.010.

Zakir F, Ahmad A, Mirza MA, Kohli K, Ahmad FJ. Exploration of a transdermal nanoemulgel as an alternative therapy for postmenopausal osteoporosis. J Drug Deliv Sci Technol [Internet]. Elsevier B.V.; 2021;65:102745. Available from: https://doi.org/10.1016/j.jddst.2021.102745.

Comments (0)

No login
gif