Enhancing vaccine stability in transdermal microneedle platforms

Shattock AJ, Johnson HC, Sim SY, Carter A, Lambach P, Hutubessy RCW, Thompson KM, Badizadegan K, Lambert B, Ferrari MJ, Jit M, Fu H, Silal SP, Hounsell RA, White RG, Mosser JF, Gaythorpe KAM, Trotter CL, Lindstrand A, O’Brien KL, Bar-Zeev N. Contribution of vaccination to improved survival and health: modelling 50 years of the Expanded Programme on Immunization. The Lancet. 2024;403:2307–16. https://doi.org/10.1016/S0140-6736(24)00850-X.

Article  Google Scholar 

Marshall S, Sahm LJ, Moore AC. The success of microneedle-mediated vaccine delivery into skin. Hum Vaccin Immunother. 2016;12:2975–83. https://doi.org/10.1080/21645515.2016.1171440.

Article  PubMed  PubMed Central  Google Scholar 

Hettinga J, Carlisle R. Vaccination into the dermal compartment: techniques, challenges, and prospects. Vaccines (Basel). 2020;8:1–40. https://doi.org/10.3390/vaccines8030534.

Article  CAS  Google Scholar 

Caudill C, Perry JL, Iliadis K, Tessema AT, Lee BJ, Mecham BS, Tian S, DeSimone JM. Transdermal vaccination via 3D-printed microneedles induces potent humoral and cellular immunity. Proc Natl Acad Sci U S A. 2021;118:1–8. https://doi.org/10.1073/pnas.2102595118.

Article  CAS  Google Scholar 

Li M, Yang L, Wang C, Cui M, Wen Z, Liao Z, Han Z, Zhao Y, Lang B, Chen H, Qian J, Shu Y, Zeng X, Sun C. Rapid induction of long-lasting systemic and mucosal immunity via thermostable microneedle-mediated chitosan oligosaccharide-encapsulated DNA nanoparticles. ACS Nano. 2023;17:24200–17. https://doi.org/10.1021/acsnano.3c09521.

Article  CAS  PubMed  Google Scholar 

Qu M, Zhou X, Li H. BCG vaccination strategies against tuberculosis: updates and perspectives. Hum Vaccin Immunother. 2021;17:5284–95. https://doi.org/10.1080/21645515.2021.2007711.

Article  PubMed  PubMed Central  Google Scholar 

Najam A, Abid R, Ali H, Hafeez H, Arif A, Ahmed S, Di Cerbo A, Ghazanfar S. The production of animal-derived polyclonal antibodies. Vet Med Int. 2024;2024. https://doi.org/10.1155/2024/4451881.

Menon I, Bagwe P, Gomes KB, Bajaj L, Gala R, Uddin MN, D’souza MJ, Zughaier SM. Microneedles: a new generation vaccine delivery system. Micromachines (Basel). 2021;12:1–18. https://doi.org/10.3390/mi12040435.

Article  Google Scholar 

Koutsonanos DG, Vassilieva EV, Stavropoulou A, Zarnitsyn VG, Esser ES, Taherbhai MT, Prausnitz MR, Compans RW, Skountzou I. Delivery of subunit influenza vaccine to skin with microneedles improves immunogenicity and long-lived protection. Sci Rep. 2012;2:1–10. https://doi.org/10.1038/srep00357.

Article  CAS  Google Scholar 

Hung IFN, Levin Y, To KKW, Chan KH, Zhang AJ, Li P, Li C, Xu T, Wong TY, Yuen KY. Dose sparing intradermal trivalent influenza (2010/2011) vaccination overcomes reduced immunogenicity of the 2009 H1N1 strain. Vaccine. 2012;30:6427–35. https://doi.org/10.1016/j.vaccine.2012.08.014.

Article  CAS  PubMed  Google Scholar 

Quan F-S, Kim Y-C, Compans RW, Prausnitz MR, Kang S-M. Dose sparing enabled by skin immunization with influenza virus-like particle vaccine using microneedles. J Control Release. 2010;147:326–32. https://doi.org/10.1016/j.jconrel.2010.07.125.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nguyen HX. Beyond the needle: innovative microneedle-based transdermal vaccination. Medicines. 2025;12:4. https://doi.org/10.3390/medicines12010004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bian Q, Xu YH, Ma XL, Hu JY, Gu YT, Wang RX, Yuan AR, Hu WT, Huang LL, Li N, Gao JQ. Differential dual-release bilayer microneedles loaded with aluminum adjuvants as a safe and effective vaccine platform. Adv Funct Mater. 2022;32. https://doi.org/10.1002/adfm.202201952.

Pahal S, Badnikar K, Ghate V, Bhutani U, Nayak MM, Subramanyam DN, Vemula PK. Microneedles for extended transdermal therapeutics: a route to advanced healthcare. Eur J Pharm Biopharm. 2021;159:151–69. https://doi.org/10.1016/j.ejpb.2020.12.020.

Article  CAS  PubMed  Google Scholar 

Rajendran K, Pahal S, Badnikar K, Nayak MM, Subramanyam DN, Vemula PK, Krishnan UM. Methotrexate delivering microneedle patches for improved therapeutic efficacy in treatment of rheumatoid arthritis. Int J Pharm. 2023;642:123184. https://doi.org/10.1016/j.ijpharm.2023.123184.

Article  CAS  PubMed  Google Scholar 

James JJ, Pahal S, Jayaraman A, Nayak AD, Koteshwar Narasimhachar S, Sundarrajan S, Basappa Veerabhadraiah B, Srinivasan B, Vemula PK, Nguyen TD, Kadamboor Veethil S. Polymeric microneedles for transdermal delivery of human placental tissue for the treatment of osteoarthritis. Macromol Biosci. 2024;2400485:1–16. https://doi.org/10.1002/mabi.202400485.

Article  CAS  Google Scholar 

Beaujean M, Uijen RF, Langereis JD, Boccara D, Dam D, Soria A, Veldhuis G, Adam L, Bonduelle O, van der Wel NN, Luirink J, Pedruzzi E, Wissink J, de Jonge MI, Combadière B. The immunological effects of intradermal particle-based vaccine delivery using a novel microinjection needle studied in a human skin explant model. Vaccine. 2023;41:2270–9. https://doi.org/10.1016/j.vaccine.2023.02.040.

Article  CAS  PubMed  Google Scholar 

Gomez AM, Babuadze G, Plourde-Campagna MA, Azizi H, Berger A, Kozak R, de La Vega MA, Xiii A, Naghibosadat M, Nepveu-Traversy ME, Ruel J. A novel intradermal tattoo-based injection device enhances the immunogenicity of plasmid DNA vaccines. npj Vaccines. 2022;7(1):172. https://doi.org/10.1038/s41541-022-00581-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vrdoljak A, Allen EA, Ferrara F, Temperton NJ, Crean AM, Moore AC. Induction of broad immunity by thermostabilised vaccines incorporated in dissolvable microneedles using novel fabrication methods. J Control Release. 2016;225:192–204. https://doi.org/10.1016/j.jconrel.2016.01.019.

Article  CAS  PubMed  Google Scholar 

Tran KTM, Le TT, Agrahari V, Peet MM, Ouattara LA, Anderson SM, Le-Kim TH, Singh ON, Doncel GF, Nguyen TD. Single-administration long-acting microarray patch with ultrahigh loading capacity and multiple releases of thermally stable antibodies. Mol Pharm. 2023;20:2352–61. https://doi.org/10.1021/acs.molpharmaceut.2c00919.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tran KTM, Gavitt TD, Farrell NJ, Curry EJ, Mara AB, Patel A, Brown L, Kilpatrick S, Piotrowska R, Mishra N, Szczepanek SM, Nguyen TD. Transdermal microneedles for the programmable burst release of multiple vaccine payloads. Nat Biomed Eng. 2021;5:998–1007. https://doi.org/10.1038/s41551-020-00650-4.

Article  CAS  PubMed  Google Scholar 

Badnikar K, Jayadevi SN, Pahal S, Vemula PK, Nayak MM, Subramanyam DN. Microscale engineering of hollow microneedle tips: design, manufacturing, optimization and validation. Drug Deliv Transl Res. 2022;12:350–67. https://doi.org/10.1007/s13346-021-01062-w.

Article  CAS  PubMed  Google Scholar 

Ghate V, Renjith A, Badnikar K, Pahal S, Jayadevi SN, Nayak MM, Vemula PK, Subramanyam DN. Single step fabrication of hollow microneedles and an experimental package for controlled drug delivery. Int J Pharm. 2023;632:122546. https://doi.org/10.1016/j.ijpharm.2022.122546.

Article  CAS  PubMed  Google Scholar 

Kim M, Kang G, Min HS, Lee Y, Park S, Jung H. Evolution of microneedle applicators for vaccination: the role of the latch applicator in optimizing dissolving microneedle-based immunization. Expert Opin Drug Delivery. 2024;1823–1835. https://doi.org/10.1080/17425247.2024.2422939.

Gomaa Y, Kolluru C, Milewski M, Lee D, Zhang J, Saklatvala R, Prausnitz MR. Development of a thermostable oxytocin microneedle patch. J Control Release. 2021;337:81–9. https://doi.org/10.1016/j.jconrel.2021.07.011.

Article  CAS  PubMed  Google Scholar 

Kolluru C, Gomaa Y, Prausnitz MR. Development of a thermostable microneedle patch for polio vaccination. Drug Deliv Transl Res. 2019;9:192–203. https://doi.org/10.1007/s13346-018-00608-9.

Article  CAS  PubMed  Google Scholar 

Vander Straeten A, Sarmadi M, Daristotle JL, Kanelli M, Tostanoski LH, Collins J, Pardeshi A, Han J, Varshney D, Eshaghi B, Garcia J. A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines. Nat Biotechnol. 2024;42(3):510–7. https://doi.org/10.1038/s41587-023-01774-z.

Article  CAS  PubMed  Google Scholar 

Bozorgi A, Fahimnia B. Micro array patch (MAP) for the delivery of thermostable vaccines in Australia: a cost/benefit analysis. Vaccine. 2021;39:6166–73. https://doi.org/10.1016/j.vaccine.2021.08.016.

Article  PubMed  Google Scholar 

Koenitz L, Crean A, Vucen S. Stress factors affecting protein stability during the fabrication and storage of dissolvable microneedles. RPS Pharm Pharmacol Rep. 2024;3. https://doi.org/10.1093/rpsppr/rqae018.

Priya S, Singhvi G. Microneedles-based drug delivery strategies: a breakthrough approach for the management of pain. Biomed Pharmacother. 2022;155:113717. https://doi.org/10.1016/j.biopha.2022.113717.

Article  CAS 

Comments (0)

No login
gif