Davis M. Glioblastoma: Overview of Disease and Treatment. Clin J Oncol Nurs. 2016;20(5):S2–8. https://doi.org/10.1188/16.CJON.S1.2-8.
Article PubMed PubMed Central Google Scholar
Wu W, et al. Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacol Res. 2021;171:105780. https://doi.org/10.1016/j.phrs.2021.105780.
Article PubMed PubMed Central CAS Google Scholar
Kim S-S, Harford JB, Pirollo KF, Chang EH. Effective treatment of glioblastoma requires crossing the blood–brain barrier and targeting tumors including cancer stem cells: The promise of nanomedicine. Biochem Biophys Res Commun. 2015;468(3):485–9. https://doi.org/10.1016/j.bbrc.2015.06.137.
Article PubMed PubMed Central CAS Google Scholar
Ganipineni LP, Danhier F, Préat V. Drug delivery challenges and future of chemotherapeutic nanomedicine for glioblastoma treatment. J Control Release. 2018;281:42–57. https://doi.org/10.1016/j.jconrel.2018.05.008.
Article PubMed CAS Google Scholar
Kang H, et al. Targeting Glioblastoma Stem Cells to Overcome Chemoresistance: An Overview of Current Therapeutic Strategies. Biomedicines. 2022;10(6):1308. https://doi.org/10.3390/biomedicines10061308.
Article PubMed PubMed Central CAS Google Scholar
Yin Q, Shen J, Zhang Z, Yu H, Li Y. Reversal of multidrug resistance by stimuli-responsive drug delivery systems for therapy of tumor. Adv Drug Deliv Rev. 2013;65(13–14):1699–715. https://doi.org/10.1016/j.addr.2013.04.011.
Article PubMed CAS Google Scholar
P. Yadav, S. V. Ambudkar, and N. Rajendra Prasad, (2022) Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer, J Nanobiotechnology, 20:(1)423, https://doi.org/10.1186/s12951-022-01626-z.
Da Ros M, et al. Glioblastoma Chemoresistance: The Double Play by Microenvironment and Blood-Brain Barrier. Int J Mol Sci. 2018;19(10):2879. https://doi.org/10.3390/ijms19102879.
Article PubMed PubMed Central CAS Google Scholar
Q. Ye et al., “Reversal of Multidrug Resistance in Cancer by Multi-Functional Flavonoids,” Front Oncol, vol. 9, Jun. 2019, https://doi.org/10.3389/fonc.2019.00487.
Das CK, et al. Exosome as a Novel Shuttle for Delivery of Therapeutics across Biological Barriers. Mol Pharm. 2019;16(1):24–40. https://doi.org/10.1021/acs.molpharmaceut.8b00901.
Article PubMed CAS Google Scholar
Chen Q, et al. Dual-pH responsive chitosan nanoparticles for improving in vivo drugs delivery and chemoresistance in breast cancer. Carbohydr Polym. 2022;290:119518. https://doi.org/10.1016/j.carbpol.2022.119518.
Article PubMed CAS Google Scholar
Li L, et al. Exosome-liposome hybrid nanoparticle codelivery of TP and miR497 conspicuously overcomes chemoresistant ovarian cancer. J Nanobiotechnology. 2022;20(1):50. https://doi.org/10.1186/s12951-022-01264-5.
Article PubMed PubMed Central CAS Google Scholar
Rajput S, et al. Overcoming Akt Induced Therapeutic Resistance in Breast Cancer through siRNA and Thymoquinone Encapsulated Multilamellar Gold Niosomes. Mol Pharm. 2015;12(12):4214–25. https://doi.org/10.1021/acs.molpharmaceut.5b00692.
Article PubMed CAS Google Scholar
S. Kachalaki, M. Ebrahimi, L. Mohamed Khosroshahi, S. Mohammadinejad, and B. Baradaran, “Cancer chemoresistance; biochemical and molecular aspects: a brief overview,” European Journal of Pharmaceutical Sciences, vol. 89, pp. 20–30, Jun. 2016, https://doi.org/10.1016/j.ejps.2016.03.025.
G. Lehne, E. Elonen, M. Baekelandt, T. Skovsgaard, and C. Peterson, “Challenging Drug Resistance in Cancer Therapy: Review of the First Nordic Conference on Chemoresistance in Cancer Treatment, October 9th and 10th, 1997,” Acta Oncol (Madr), vol. 37, no. 5, pp. 431–439, Jan. 1998, https://doi.org/10.1080/028418698430377.
C. Fiorini, M. Cordani, C. Padroni, G. Blandino, S. Di Agostino, and M. Donadelli, “Mutant p53 stimulates chemoresistance of pancreatic adenocarcinoma cells to gemcitabine,” Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol. 1853, no. 1, pp. 89–100, Jan. 2015, https://doi.org/10.1016/j.bbamcr.2014.10.003.
Bai X, Chen Y, Hou X, Huang M, Jin J. Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab Rev. 2016;48(4):541–67. https://doi.org/10.1080/03602532.2016.1197239.
Article PubMed CAS Google Scholar
Zhao J. Cancer stem cells and chemoresistance: The smartest survives the raid. Pharmacol Ther. 2016;160:145–58. https://doi.org/10.1016/j.pharmthera.2016.02.008.
Article PubMed PubMed Central CAS Google Scholar
Das M, Law S. Role of tumor microenvironment in cancer stem cell chemoresistance and recurrence. Int J Biochem Cell Biol. 2018;103:115–24. https://doi.org/10.1016/j.biocel.2018.08.011.
Article PubMed CAS Google Scholar
Ji X, Lu Y, Tian H, Meng X, Wei M, Cho WC. Chemoresistance mechanisms of breast cancer and their countermeasures. Biomed Pharmacother. 2019;114:108800. https://doi.org/10.1016/j.biopha.2019.108800.
Article PubMed CAS Google Scholar
Ramos A, Sadeghi S, Tabatabaeian H. Battling Chemoresistance in Cancer: Root Causes and Strategies to Uproot Them. Int J Mol Sci. 2021;22(17):9451. https://doi.org/10.3390/ijms22179451.
Article PubMed PubMed Central CAS Google Scholar
Madden EC, Gorman AM, Logue SE, Samali A. Tumour Cell Secretome in Chemoresistance and Tumour Recurrence. Trends Cancer. 2020;6(6):489–505. https://doi.org/10.1016/j.trecan.2020.02.020.
Article PubMed CAS Google Scholar
Romani M, Daga A, Forlani A, Pistillo MP, Banelli B. Targeting of Histone Demethylases KDM5A and KDM6B Inhibits the Proliferation of Temozolomide-Resistant Glioblastoma Cells. Cancers (Basel). 2019;11(6):878. https://doi.org/10.3390/cancers11060878.
Park H, Otte A, Park K. Evolution of drug delivery systems: From 1950 to 2020 and beyond. J Control Release. 2022;342:53–65. https://doi.org/10.1016/j.jconrel.2021.12.030.
Article PubMed CAS Google Scholar
Eljack S, David S, Faggad A, Chourpa I, Allard-Vannier E. Nanoparticles design considerations to co-deliver nucleic acids and anti-cancer drugs for chemoresistance reversal. Int J Pharm X. 2022;4:100126. https://doi.org/10.1016/j.ijpx.2022.100126.
Article PubMed PubMed Central CAS Google Scholar
Hassanzadeganroudsari M, Soltani M, Heydarinasab A, Apostolopoulos V, Akbarzadehkhiyavi A, Nurgali K. Targeted nano-drug delivery system for glioblastoma therapy: In vitro and in vivo study. J Drug Deliv Sci Technol. 2020;60:102039. https://doi.org/10.1016/j.jddst.2020.102039.
Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev. 2013;65(13–14):1866–79. https://doi.org/10.1016/j.addr.2013.09.019.
Article PubMed PubMed Central CAS Google Scholar
Borse K, Shende P. Dendrimer-mediated proton sponge effect in the treatment of pulmonary acidosis. Drug Deliv Transl Res. 2024. https://doi.org/10.1007/s13346-024-01752-1.
Wu S, et al. Cell membrane fusion composite lipid nanocarrier: preparation and evaluation of anti-tumor effects. Drug Deliv Transl Res. 2024. https://doi.org/10.1007/s13346-024-01750-3.
Article PubMed PubMed Central Google Scholar
Mandal M, Banerjee I, Mandal M. Nanoparticle-mediated gene therapy as a novel strategy for the treatment of retinoblastoma. Colloids Surf B Biointerfaces. 2022;220:112899. https://doi.org/10.1016/j.colsurfb.2022.112899.
Article PubMed CAS Google Scholar
Lin X, et al. Nanoparticles for co-delivery of paclitaxel and curcumin to overcome chemoresistance against breast cancer. J Drug Deliv Sci Technol. 2023;79:104050. https://doi.org/10.1016/j.jddst.2022.104050.
Comments (0)