mPEG-PLA micelles for nose-to-brain delivery of crizotinib-heptamethine cyanine dye conjugate for potential treatment of glioblastoma

Cooper E, Choi PJ, Hwang K, et al. Elucidating the cellular uptake mechanisms of heptamethine cyanine dye analogues for their use as an anticancer drug-carrier molecule for the treatment of glioblastoma. Chem Biol Drug Des. 2023;101(3):696–716.

Article  CAS  PubMed  Google Scholar 

Ale Y, Nainwal N. Progress and challenges in the diagnosis and treatment of brain cancer using nanotechnology. Mol Pharm. 2023;20(10):4893–921.

Article  CAS  PubMed  Google Scholar 

Brar HK, Jose J, Wu Z, et al. Tyrosine kinase inhibitors for glioblastoma multiforme: challenges and opportunities for drug delivery. Pharmaceutics. 2022;15(1):59.

Article  PubMed  PubMed Central  Google Scholar 

Bruinsmann FA, Richter Vaz G, de Cristo Soares Alves A, et al. Nasal drug delivery of anticancer drugs for the treatment of glioblastoma: preclinical and clinical trials. Mol Basel Switz. 2019;24(23):4312.

CAS  Google Scholar 

League-Pascual JC, Lester-McCully CM, Shandilya S, et al. Plasma and cerebrospinal fluid pharmacokinetics of select chemotherapeutic agents following intranasal delivery in a non-human primate model. J Neurooncol. 2017;132(3):401–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pardridge WM. A historical review of brain drug delivery. Pharmaceutics. 2022;14(6):1283.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mo F, Pellerino A, Soffietti R, et al. Blood-brain barrier in brain tumors: biology and clinical relevance. Int J Mol Sci. 2021;22(23):12654.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mathew EN, Berry BC, Yang HW, et al. Delivering therapeutics to glioblastoma: overcoming biological constraints. Int J Mol Sci. 2022;23(3):1711.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cooper E, Choi PJ, Denny WA, et al. The use of heptamethine cyanine dyes as drug-conjugate systems in the treatment of primary and metastatic brain tumors. Front Oncol. 2021;11:654921.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sonvico F, Clementino A, Buttini F, et al. Surface-modified nanocarriers for nose-to-brain delivery: from bioadhesion to targeting. Pharmaceutics. 2018;10(1):34.

Article  PubMed  PubMed Central  Google Scholar 

Liu Q, Shen Y, Chen J, et al. Nose-to-brain transport pathways of wheat germ agglutinin conjugated PEG-PLA nanoparticles. Pharm Res. 2012;29(2):546–58.

Article  CAS  PubMed  Google Scholar 

Pires PC, Santos AO. Nanosystems in nose-to-brain drug delivery: a review of non-clinical brain targeting studies. J Control Release Off J Control Release Soc. 2018;270:89–100.

Article  CAS  Google Scholar 

Tang W, Fan W, Lau J, et al. Emerging blood-brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem Soc Rev. 2019;48(11):2967–3014.

Article  CAS  PubMed  Google Scholar 

Upadhaya PG, Pulakkat S, Patravale VB. Nose-to-brain delivery: exploring newer domains for glioblastoma multiforme management. Drug Deliv Transl Res. 2020;10(4):1044–56.

Article  PubMed  Google Scholar 

Agrawal M, Saraf S, Saraf S, et al. Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release Off J Control Release Soc. 2018;281:139–77.

Article  CAS  Google Scholar 

Bahadur S, Pathak K. Physicochemical and physiological considerations for efficient nose-to-brain targeting. Expert Opin Drug Deliv. 2012;9(1):19–31.

Article  CAS  PubMed  Google Scholar 

Deshmukh V, Pathan NS, Haldar N, et al. Exploring intranasal drug delivery via nanocarriers: a promising glioblastoma therapy. Colloids Surf B Biointerfaces. 2025;245:114285.

Article  CAS  PubMed  Google Scholar 

Cai Y, Qi J, Lu Y, et al. The in vivo fate of polymeric micelles. Adv Drug Deliv Rev. 2022;188:114463.

Article  CAS  PubMed  Google Scholar 

Jin G-W, Rejinold NS, Choy J-H. Multifunctional polymeric micelles for cancer therapy. Polymers. 2022;14(22):4839.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Olivier J-C. Drug transport to brain with targeted nanoparticles. NeuroRx J Am Soc Exp Neurother. 2005;2(1):108–19.

Google Scholar 

Xiao RZ, Zeng ZW, Zhou GL, et al. Recent advances in PEG–PLA block copolymer nanoparticles. Int J Nanomedicine. 2010;5:1057–65.

CAS  PubMed  PubMed Central  Google Scholar 

Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov. 2003;8(24):1112–20.

CAS  Google Scholar 

Marques JG, Gaspar VM, Markl D, et al. Co-delivery of Sildenafil (Viagra(®)) and Crizotinib for synergistic and improved anti-tumoral therapy. Pharm Res. 2014;31(9):2516–28.

Article  CAS  PubMed  Google Scholar 

Wei Y, Xu S, Wang F, et al. A novel combined micellar system of lapatinib and Paclitaxel with enhanced antineoplastic effect against human epidermal growth factor receptor-2 positive breast tumor in vitro. J Pharm Sci. 2015;104(1):165–77.

Article  CAS  PubMed  Google Scholar 

Mu C-F, Xiong Y, Bai X, et al. Codelivery of ponatinib and SAR302503 by active bone-targeted polymeric micelles for the treatment of therapy-resistant chronic myeloid leukemia. Mol Pharm. 2017;14(1):274–83.

Article  CAS  PubMed  Google Scholar 

Vila A, Sánchez A, Evora C, et al. PEG-PLA nanoparticles as carriers for nasal vaccine delivery. J Aerosol Med Off J Int Soc Aerosols Med. 2004;17(2):174–85.

Article  CAS  Google Scholar 

Gao X, Tao W, Lu W, et al. Lectin-conjugated PEG-PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials. 2006;27(18):3482–90.

Article  CAS  PubMed  Google Scholar 

Le Rhun E, Chamberlain MC, Zairi F, et al. Patterns of response to crizotinib in recurrent glioblastoma according to ALK and MET molecular profile in two patients. CNS Oncol. 2015;4(6):381–6.

Article  PubMed  PubMed Central  Google Scholar 

Chi AS, Batchelor TT, Kwak EL, et al. Rapid radiographic and clinical improvement after treatment of a MET-amplified recurrent glioblastoma with a mesenchymal-epithelial transition inhibitor. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30(3):e30-33.

Article  Google Scholar 

Pflug KM, Lee DW, Tripathi A, et al. Cyanine dye conjugation enhances crizotinib localization to intracranial tumors, attenuating NF-κB-Inducing kinase activity and glioma progression. Mol Pharm. 2023;20(12):6140–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stommel JM, Kimmelman AC, Ying H, et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science. 2007;318(5848):287–90.

Article  CAS  PubMed  Google Scholar 

Westphal M, Maire CL, Lamszus K. EGFR as a target for glioblastoma treatment: an unfulfilled promise. CNS Drugs. 2017;31(9):723–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim G, Ko YT. Small molecule tyrosine kinase inhibitors in glioblastoma. Arch Pharm Res. 2020;43(4):385–94.

Comments (0)

No login
gif