Cooper E, Choi PJ, Hwang K, et al. Elucidating the cellular uptake mechanisms of heptamethine cyanine dye analogues for their use as an anticancer drug-carrier molecule for the treatment of glioblastoma. Chem Biol Drug Des. 2023;101(3):696–716.
Article CAS PubMed Google Scholar
Ale Y, Nainwal N. Progress and challenges in the diagnosis and treatment of brain cancer using nanotechnology. Mol Pharm. 2023;20(10):4893–921.
Article CAS PubMed Google Scholar
Brar HK, Jose J, Wu Z, et al. Tyrosine kinase inhibitors for glioblastoma multiforme: challenges and opportunities for drug delivery. Pharmaceutics. 2022;15(1):59.
Article PubMed PubMed Central Google Scholar
Bruinsmann FA, Richter Vaz G, de Cristo Soares Alves A, et al. Nasal drug delivery of anticancer drugs for the treatment of glioblastoma: preclinical and clinical trials. Mol Basel Switz. 2019;24(23):4312.
League-Pascual JC, Lester-McCully CM, Shandilya S, et al. Plasma and cerebrospinal fluid pharmacokinetics of select chemotherapeutic agents following intranasal delivery in a non-human primate model. J Neurooncol. 2017;132(3):401–7.
Article CAS PubMed PubMed Central Google Scholar
Pardridge WM. A historical review of brain drug delivery. Pharmaceutics. 2022;14(6):1283.
Article CAS PubMed PubMed Central Google Scholar
Mo F, Pellerino A, Soffietti R, et al. Blood-brain barrier in brain tumors: biology and clinical relevance. Int J Mol Sci. 2021;22(23):12654.
Article CAS PubMed PubMed Central Google Scholar
Mathew EN, Berry BC, Yang HW, et al. Delivering therapeutics to glioblastoma: overcoming biological constraints. Int J Mol Sci. 2022;23(3):1711.
Article CAS PubMed PubMed Central Google Scholar
Cooper E, Choi PJ, Denny WA, et al. The use of heptamethine cyanine dyes as drug-conjugate systems in the treatment of primary and metastatic brain tumors. Front Oncol. 2021;11:654921.
Article CAS PubMed PubMed Central Google Scholar
Sonvico F, Clementino A, Buttini F, et al. Surface-modified nanocarriers for nose-to-brain delivery: from bioadhesion to targeting. Pharmaceutics. 2018;10(1):34.
Article PubMed PubMed Central Google Scholar
Liu Q, Shen Y, Chen J, et al. Nose-to-brain transport pathways of wheat germ agglutinin conjugated PEG-PLA nanoparticles. Pharm Res. 2012;29(2):546–58.
Article CAS PubMed Google Scholar
Pires PC, Santos AO. Nanosystems in nose-to-brain drug delivery: a review of non-clinical brain targeting studies. J Control Release Off J Control Release Soc. 2018;270:89–100.
Tang W, Fan W, Lau J, et al. Emerging blood-brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem Soc Rev. 2019;48(11):2967–3014.
Article CAS PubMed Google Scholar
Upadhaya PG, Pulakkat S, Patravale VB. Nose-to-brain delivery: exploring newer domains for glioblastoma multiforme management. Drug Deliv Transl Res. 2020;10(4):1044–56.
Agrawal M, Saraf S, Saraf S, et al. Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release Off J Control Release Soc. 2018;281:139–77.
Bahadur S, Pathak K. Physicochemical and physiological considerations for efficient nose-to-brain targeting. Expert Opin Drug Deliv. 2012;9(1):19–31.
Article CAS PubMed Google Scholar
Deshmukh V, Pathan NS, Haldar N, et al. Exploring intranasal drug delivery via nanocarriers: a promising glioblastoma therapy. Colloids Surf B Biointerfaces. 2025;245:114285.
Article CAS PubMed Google Scholar
Cai Y, Qi J, Lu Y, et al. The in vivo fate of polymeric micelles. Adv Drug Deliv Rev. 2022;188:114463.
Article CAS PubMed Google Scholar
Jin G-W, Rejinold NS, Choy J-H. Multifunctional polymeric micelles for cancer therapy. Polymers. 2022;14(22):4839.
Article CAS PubMed PubMed Central Google Scholar
Olivier J-C. Drug transport to brain with targeted nanoparticles. NeuroRx J Am Soc Exp Neurother. 2005;2(1):108–19.
Xiao RZ, Zeng ZW, Zhou GL, et al. Recent advances in PEG–PLA block copolymer nanoparticles. Int J Nanomedicine. 2010;5:1057–65.
CAS PubMed PubMed Central Google Scholar
Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov. 2003;8(24):1112–20.
Marques JG, Gaspar VM, Markl D, et al. Co-delivery of Sildenafil (Viagra(®)) and Crizotinib for synergistic and improved anti-tumoral therapy. Pharm Res. 2014;31(9):2516–28.
Article CAS PubMed Google Scholar
Wei Y, Xu S, Wang F, et al. A novel combined micellar system of lapatinib and Paclitaxel with enhanced antineoplastic effect against human epidermal growth factor receptor-2 positive breast tumor in vitro. J Pharm Sci. 2015;104(1):165–77.
Article CAS PubMed Google Scholar
Mu C-F, Xiong Y, Bai X, et al. Codelivery of ponatinib and SAR302503 by active bone-targeted polymeric micelles for the treatment of therapy-resistant chronic myeloid leukemia. Mol Pharm. 2017;14(1):274–83.
Article CAS PubMed Google Scholar
Vila A, Sánchez A, Evora C, et al. PEG-PLA nanoparticles as carriers for nasal vaccine delivery. J Aerosol Med Off J Int Soc Aerosols Med. 2004;17(2):174–85.
Gao X, Tao W, Lu W, et al. Lectin-conjugated PEG-PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials. 2006;27(18):3482–90.
Article CAS PubMed Google Scholar
Le Rhun E, Chamberlain MC, Zairi F, et al. Patterns of response to crizotinib in recurrent glioblastoma according to ALK and MET molecular profile in two patients. CNS Oncol. 2015;4(6):381–6.
Article PubMed PubMed Central Google Scholar
Chi AS, Batchelor TT, Kwak EL, et al. Rapid radiographic and clinical improvement after treatment of a MET-amplified recurrent glioblastoma with a mesenchymal-epithelial transition inhibitor. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30(3):e30-33.
Pflug KM, Lee DW, Tripathi A, et al. Cyanine dye conjugation enhances crizotinib localization to intracranial tumors, attenuating NF-κB-Inducing kinase activity and glioma progression. Mol Pharm. 2023;20(12):6140–50.
Article CAS PubMed PubMed Central Google Scholar
Stommel JM, Kimmelman AC, Ying H, et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science. 2007;318(5848):287–90.
Article CAS PubMed Google Scholar
Westphal M, Maire CL, Lamszus K. EGFR as a target for glioblastoma treatment: an unfulfilled promise. CNS Drugs. 2017;31(9):723–35.
Article CAS PubMed PubMed Central Google Scholar
Kim G, Ko YT. Small molecule tyrosine kinase inhibitors in glioblastoma. Arch Pharm Res. 2020;43(4):385–94.
Comments (0)