Genomically-selected antifungal Bacillaceae strains improve wheat yield and baking quality

Abedinzadeh M, Etesami H, Alikhani HA (2019) Characterization of rhizosphere and endophytic bacteria from roots of maize (Zea mays L.) plant irrigated with wastewater with biotechnological potential in agriculture. Biotechnol Rep 21:e00305. https://doi.org/10.1016/j.btre.2019.e00305

Article  Google Scholar 

Abeshu Y, Kasahun C (2024) Fast and non- destructive multivariate test method to predict bread wheat grain major quality parameters. Int J Food Prop 27:400–410. https://doi.org/10.1080/10942912.2024.2317732

Article  CAS  Google Scholar 

Akinrinlola RJ, Yuen GY, Drijber RA, Adesemoye AO (2018) Evaluation of Bacillus strains for plant growth promotion and predictability of efficacy by in vitro physiological traits. Int J Microbiol 2018. https://doi.org/10.1155/2018/5686874

Almirón C, Petitti TD, Ponso MA, Romero AM, Areco VA, Bianco MI, Espariz M, Yaryura PM (2025) Functional and genomic analyses of plant growth promoting traits in Priestia aryabhattai and Paenibacillus sp. isolates from tomato rhizosphere. Sci Rep 15:3498. https://doi.org/10.1038/s41598-025-87390-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amore A, Parameswaran B, Kumar R, Birolo L, Vinciguerra R, Marcolongo L, Ionata E, La Cara F, Pandey A, Faraco V (2015) Application of a new xylanase activity from Bacillus amyloliquefaciensXR44A in brewer’s spent grain saccharification. J Chem Tech Biotech 90:573–581. https://doi.org/10.1002/jctb.4589

Article  CAS  Google Scholar 

Ariffin H, Abdullah N, Umi Kalsom M, Shirai Y, Hassan M (2006) Production and characterization of cellulase by Bacillus pumilus EB3. Int J Eng Technol 3:47–53

Google Scholar 

Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:W81–W87. https://doi.org/10.1093/nar/gkz310

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borowiec ML (2016) AMAS: a fast tool for alignment manipulation and computing of summary statistics. PeerJ 4:e1660. https://doi.org/10.7717/peerj.1660

Article  PubMed  PubMed Central  Google Scholar 

Bouma TJ, Nielsen KL, Koutstaal B (2000) Sample preparation and scanning protocol for computerised analysis of root length and diameter. Plant Soil 218(2):185–196. https://doi.org/10.1023/A:1014905104017

Article  CAS  Google Scholar 

Chanda SV, Singh YD (2002) Estimation of leaf area in wheat using linear measurements. pb&ss 46:75–79

Google Scholar 

Chen L, Heng J, Qin S, Bian K (2018) A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight. PLoS On 13:1–22. https://doi.org/10.1371/journal.pone.0198560

Article  CAS  Google Scholar 

Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Süssmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriss R (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014. https://doi.org/10.1038/nbt1325

Article  CAS  PubMed  Google Scholar 

Chen XH, Koumoutsi A, Scholz R, Schneider K, Vater J, Süssmuth R, Piel J, Borriss R (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140:27–37. https://doi.org/10.1016/j.jbiotec.2008.10.011

Article  CAS  PubMed  Google Scholar 

Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants - with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513. https://doi.org/10.1016/j.micres.2008.08.007

Article  CAS  PubMed  Google Scholar 

Chowdhury SP, Hartmann A, Gao XW, Borriss R (2015) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Front Microbiol 6:1–11. https://doi.org/10.3389/fmicb.2015.00780

Article  Google Scholar 

Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, De Meyer S, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466. https://doi.org/10.1099/ijsem.0.002516

Article  CAS  PubMed  Google Scholar 

Da Costa PB, Granada CE, Ambrosini A, Moreira F, De Souza R, Dos Passos JFM, Arruda L, Passaglia LMP (2014) A model to explain plant growth promotion traits: a multivariate analysis of 2,211 bacterial isolates. PLoS One 9:1–25. https://doi.org/10.1371/journal.pone.0116020

Article  CAS  Google Scholar 

Dal Cortivo C, Barion G, Visioli G, Mattarozzi M, Mosca G, Vamerali T (2017) Increased root growth and nitrogen accumulation in common wheat following PGPR inoculation: assessment of plant-microbe interactions by ESEM. Agr Ecosyst Environ 247:396–408. https://doi.org/10.1016/j.agee.2017.07.006

Article  CAS  Google Scholar 

de Sousa T, Ribeiro M, Sabença C, Igrejas G (2021) The 10,000-year success story of wheat! Foods 10:2124. https://doi.org/10.3390/foods10092124

Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2020) InfoStat 2020. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina (25, 01, 2022). Available online: http://www.infostat.com.ar. Accessed on 31 Mar 2022

Dunlap CA, Bowman MJ, Rooney AP (2019) Iturinic lipopeptide diversity in the Bacillus subtilis species group – important antifungals for plant disease biocontrol applications. Front Microbiol 10:1794

PubMed  PubMed Central  Google Scholar 

EFSA Panel on Biological Hazards (BIOHAZ) (2016) Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs. EFS2 14. https://doi.org/10.2903/j.efsa.2016.4524

Espariz M, Zuljan FA, Esteban L, Magni C (2016) Taxonomic identity resolution of highly phylogenetically related strains and selection of phylogenetic markers by using genome-scale methods: the Bacillus pumilus group case. PLoS One 11:e0163098. https://doi.org/10.1371/journal.pone.0163098

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan B, Blom J, Klenk H-P, Borriss R (2017) Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “Operational Group B. amyloliquefaciens” within the B. subtilis species complex. Front Microbiol 8:1–15. https://doi.org/10.3389/fmicb.2017.00022

Article  Google Scholar 

Ficarra FA, Santecchia I, Lagorio SH, Alarcón S, Magni C, Espariz M (2016) Genome mining of lipolytic exoenzymes from Bacillus safensis S9 and Pseudomonas alcaliphila ED1 isolated from a dairy wastewater lagoon. Arch Microbiol 198:893–904. https://doi.org/10.1007/s00203-016-1250-4

Article  CAS  PubMed  Google Scholar 

Frederick A, Mei T (2024). Biologicals bring nature back to agriculture [Analyst Note]. PitchBook Data. https://pitchbook.com/news/reports/q1-2024-pitchbook-analyst-note-biologicals-bring-nature-back-to-agriculture

Goswami D, Thakker JN, Dhandhukia PC (2015) Simultaneous detection and quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) produced by rhizobacteria from l-tryptophan (Trp) using HPTLC. J Microbiol Methods 110:7–14. https://doi.org/10.1016/j.mimet.2015.01.001

Article  CAS  PubMed  Google Scholar 

Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1127500. https://doi.org/10.1080/23311932.2015.1127500

Article  CAS  Google Scholar 

Gupta A, Singh UB, Sahu PK, Paul S, Kumar A, Malviya D, Singh S, Kuppusamy P, Singh P, Paul D, Rai JP, Singh HV, Manna MC, Crusberg TC, Kumar A, Saxena AK (2022) Linking soil microbial diversity to modern agriculture practices: a review. IJERPH 19:3141. https://doi.org/10.3390/ijerph19053141

Article  PubMed  PubMed Central  Google Scholar 

Ibarra-Villarreal AL, Villarreal-Delgado MF, Parra-Cota FI, Yepez EA, Guzmán C, Gutierrez-Coronado MA, Valdez LC, Saint-Pierre C, de Los S-V (2023) Effect of a native bacterial consortium on growth, yield, and grain quality of durum wheat (Triticum turgidum L. subsp. durum) under different nitrogen rates in the Yaqui Valley, Mexico. Plant Signal Behav 18:1–10. https://doi.org/10.1080/15592324.2023.2219837

Article  CAS  Google Scholar 

Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S (2018) High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. https://doi.org/10.1038/s41467-018-07641-9

Article  PubMed  PubMed Central  Google Scholar 

Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5–W9. https://doi.org/10.1093/nar/gkn201

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan MY, Nadeem SM, Sohaib M, Waqas MR, Alotaibi F, Ali L, Zahir ZA, Al-Barakah FNI (2022) Potential of plant growth promoting bacterial consortium for improving the growth and yield of wheat under saline conditions. Front Microbiol 13:958522. https://doi.org/10.3389/fmicb.2022.958522

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif