Flo5-1 and Nrg1 are involved in reversible pH-dependent flocculation in

Ata O, Rebnegger C, Tatto NE, Valli M, Mairinger T, Hann S, Steiger MG, Calik P, Mattanovich D (2018) A single Gal4-like transcription factor activates the Crabtree effect in Komagataella phaffii. Nat Commun 9:4911

PubMed  PubMed Central  Google Scholar 

Barbay D, Macakova M, Sutzl L, De S, Mattanovich D, Gasser B (2021) Two homologs of the Cat8 transcription factor are involved in the regulation of ethanol utilization in Komagataella phaffii. Curr Genet 67:641–661

CAS  PubMed  PubMed Central  Google Scholar 

Braun BR, Kadosh D, Johnson AD (2001) NRG1, a repressor of filamentous growth in C. albicans, is down-regulated during filament induction. EMBO J 20:4753–4761

CAS  PubMed  PubMed Central  Google Scholar 

Brückner S, Schubert R, Kraushaar T, Hartmann R, Hoffmann D, Jelli E, Drescher K, Müller D, Essen LO, Mösch H (2020) Kin discrimination in social yeast is mediated by cell surface receptors of the Flo11 adhesin family. eLife 9:e55587

PubMed  PubMed Central  Google Scholar 

Caro LH, Tettelin H, Vossen JH, Ram AF, van den Ende H, Klis FM (1997) In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13:1477–1489

CAS  PubMed  Google Scholar 

Cullen PJ, Sprague GF (2000) Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci USA 97:13619–13624

CAS  PubMed  PubMed Central  Google Scholar 

De S, Rebnegger C, Moser J, Tatto N, Graf AB, Mattanovich D, Gasser B (2020) Pseudohyphal differentiation in Komagataella phaffii: investigating the FLO gene family. FEMS Yeast Res 20:foaa044

CAS  PubMed  PubMed Central  Google Scholar 

Essen L, Vogt M, Mösch H (2020) Diversity of GPI-anchored fungal adhesins. Biol Chem 401:1389–1405

CAS  PubMed  Google Scholar 

Fairhead C, Llorente B, Denis F, Soler M, Dujon B (1996) New vectors for combinatorial deletions in yeast chromosomes and for gap-repair cloning using ‘split-marker’ recombination. Yeast 12:1439–1457

CAS  PubMed  Google Scholar 

Fichtner L, Schulze F, Braus GH (2007) Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell–cell and cell–substrate adherence of S. cerevisiae S288c. Mol Microbiol 66:1276–1289

CAS  PubMed  PubMed Central  Google Scholar 

Gasser B, Prielhofer R, Marx H, Maurer M, Nocon J, Steiger M, Puxbaum V, Sauer M, Mattanovich D (2013) Pichia pastoris: protein production host and model organism for biomedical research. Future Microbiol 8:191–208

CAS  PubMed  Google Scholar 

Gómez-Gil E, Franco A, Madrid M, Vázquez-Marín B, Gacto M, Fernández-Breis J, Vicente-Soler J, Soto T, Cansado J (2019) Quorum sensing and stress-activated MAPK signaling repress yeast to hypha transition in the fission yeast Schizosaccharomyces japonicus. PLoS Genet 15:e1008192

PubMed  PubMed Central  Google Scholar 

Goossens KV, Ielasi FS, Nookaew I, Stals I, Alonso-Sarduy L, Daenen L, Van Mulders SE, Stassen C, van Eijsden RG, Siewers V, Delvaux FR, Kasas S, Nielsen J, Devreese B, Willaert RG (2015) Molecular mechanism of flocculation self-recognition in yeast and its role in mating and survival. mBio 6:e00427–15

Guo B, Styles CA, Feng Q, Fink GR (2000) A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci U S A 97:12158–12163

CAS  PubMed  PubMed Central  Google Scholar 

Jin Y-L, Speers RA (2018) Effect of environmental conditions on the flocculation of Saccharomyces cerevisiae. J Am Soc Brew Chem 58:108–116

Google Scholar 

Jin Y-L, Ritcey LL, Speers RA, Dolphin PJ (2018) Effect of cell surface hydrophobicity, charge, and zymolectin density on the flocculation of Saccharomyces cerevisiae. J Am Soc Brew Chem 59:1–9

Google Scholar 

Kobayashi O, Suda H, Ohtani T, Sone H (1996) Molecular cloning and analysis of the dominant flocculation gene FLO8 from Saccharomyces cerevisiae. Mol Gen Genet 251:707–715

CAS  PubMed  Google Scholar 

Kock M, Brückner S, Wozniak N, Maestre-Reyna M, Veelders M, Schlereth J, Mösch H, Essen L (2018) Structural and functional characterization of PA14/Flo5-like adhesins from Komagataella pastoris. Front Microbiol 9:2581

PubMed  PubMed Central  Google Scholar 

Kuchin S, Vyas VK, Carlson M (2002) Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol 22:3994–4000

CAS  PubMed  PubMed Central  Google Scholar 

Lambrechts MG, Bauer FF, Marmur J, Pretorius IS (1996) Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc Natl Acad Sci U S A 93:8419–8424

CAS  PubMed  PubMed Central  Google Scholar 

Liu H, Styles CA, Fink GR (1996) Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144:967–978

CAS  PubMed  PubMed Central  Google Scholar 

Lo WS, Dranginis AM (1998) The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 9:161–171

CAS  PubMed  PubMed Central  Google Scholar 

Murad AM, Leng P, Straffon M, Wishart J, Macaskill S, MacCallum D, Schnell N, Talibi D, Marechal D, Tekaia F, d’Enfert C, Gaillardin C, Odds FC, Brown AJ (2001) NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J 20:4742–4752

CAS  PubMed  PubMed Central  Google Scholar 

Prielhofer R, Cartwright SP, Graf AB, Valli M, Bill RM, Mattanovich D, Gasser B (2015) Pichia pastoris regulates its gene-specific response to different carbon sources at the transcriptional, rather than the translational, level. BMC Genomics 16:167

PubMed  PubMed Central  Google Scholar 

Prielhofer R, Barrero JJ, Steuer S, Gassler T, Zahrl R, Baumann K, Sauer M, Mattanovich D, Gasser B, Marx H (2017) GoldenPiCS: a golden gate-derived modular cloning system for applied synthetic biology in the yeast Pichia pastoris. BMC Syst Biol 11:123

PubMed  PubMed Central  Google Scholar 

Rebnegger C, Vos T, Graf AB, Valli M, Pronk JT, Daran-Lapujade P, Mattanovich D (2016) Pichia pastoris exhibits high viability and a low maintenance energy requirement at near-zero specific growth rates. Appl Environ Microbiol 82:4570–4583

Ruth C, Buchetics M, Vidimce V, Kotz D, Naschberger S, Mattanovich D, Pichler H, Gasser B (2014) Pichia pastoris Aft1 - a novel transcription factor, enhancing recombinant protein secretion. Microb Cell Fact 13:120

PubMed  PubMed Central  Google Scholar 

Sanchez-Arreguin JA, Ruiz-Herrera J, Mares-Rodriguez FJ, Leon-Ramirez CG, Sanchez-Segura L, Zapata-Morin PA, Coronado-Gallegos J, Arechiga-Carvajal ET (2021) Acid pH strategy adaptation through NRG1 in Ustilago maydis. J Fungi (Basel) 7:91

CAS  PubMed  Google Scholar 

Shen W, Kong C, Xue Y, Liu Y, Cai M, Zhang Y, Jiang T, Zhou X, Zhou M (2016) Kinase screening in Pichia pastoris identified promising targets involved in cell growth and alcohol oxidase 1 promoter (PAOX1) regulation. PLoS One 11:e0167766

Smukalla S, Caldara M, Pochet N, Beauvais A, Guadagnini S, Yan C, Vinces MD, Jansen A, Prevost MC, Latgé JP, Fink GR, Foster KR, Verstrepen KJ (2008) FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell 135:726–737

CAS  PubMed  PubMed Central  Google Scholar 

Soares EV (2011) Flocculation in Saccharomyces cerevisiae: a review. J Appl Microbiol 110:1–18

CAS  PubMed  Google Scholar 

Soares EV, Teixeira JA, Mota M (1994) Effect of cultural and nutritional conditions on the control of flocculation expression in Saccharomyces cerevisiae. Can J Microbiol 40:851–857

CAS  PubMed  Google Scholar 

Stadlmayr G, Benakovitsch K, Gasser B, Mattanovich D, Sauer M (2010) Genome-scale analysis of library sorting (GALibSo): isolation of secretion enhancing factors for recombinant protein production in Pichia pastoris. Biotechnol Bioeng 105:543–555

CAS  PubMed  Google Scholar 

Stratford M, Assinder S (1991) Yeast flocculation: Flo1 and NewFlo phenotypes and receptor structure. Yeast 7:559–574

CAS  PubMed  Google Scholar 

Teunissen AW, Steensma HY (1995) Review: the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family. Yeast 11:1001–1013

CAS  PubMed  Google Scholar 

Van Mulders SE, Christianen E, Saerens SM, Daenen L, Verbelen PJ, Willaert R, Verstrepen KJ, Delvaux FR (2009) Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae. FEMS Yeast Res 9:178–190

PubMed  Google Scholar 

Vyas VK, Berkey CD, Miyao T, Carlson M (2005) Repressors Nrg1 and Nrg2 regulate a set of stress-responsive genes in Saccharomyces cerevisiae. Eukaryot Cell 4:1882–1891

CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Cai M, Shi L, Wang Q, Zhu J, Wang J, Zhou M, Zhou X, Zhang Y (2016) PpNrg1 is a transcriptional repressor for glucose and glycerol repression of AOX1 promoter in methylotrophic yeast Pichia pastoris. Biotechnol Lett 38:291–298

CAS  PubMed 

Comments (0)

No login
gif