Integrative genomic analysis identifies novel causal genes of Hodgkin’s and non-Hodgkin’s lymphoma

Bray F, Laversanne M, Weiderpass E, Soerjomataram I. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2022;74(3):229–63. https://doi.org/10.3322/caac.21834.

Article  Google Scholar 

Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science. 1985;226(4678):1097–9. https://doi.org/10.1126/science.6093263.

Article  Google Scholar 

Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM. Human c-myc Onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci. 1982;79(24):7824–7. https://doi.org/10.1073/pnas.79.24.7824.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu-Monette ZY, Medeiros LJ, Li Y, Orlowski RZ, Andreeff M, Bueso-Ramos CE, Greiner TC, McDonnell TJ, Young KH. Dysfunction of the TP53 tumor suppressor gene in lymphoid malignancies. Blood. 2012;119(16):3668–83. https://doi.org/10.1182/blood-2011-11-366062.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lenz G, Davis RE, Ngo VN, Lam L, George TC, Wright GW, Dave SS, Zhao H, Xu W, Rosenwald A, et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science. 2008;319(5870):1676–9. https://doi.org/10.1126/science.1153629.

Article  CAS  PubMed  Google Scholar 

Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, Paul JE, Boyle M, Woolcock BW, Kuchenbauer F, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010;42(2):181–5. https://doi.org/10.1038/ng.518.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kato M, Sanada M, Kato I, Sato Y, Takita J, Takeuchi K, Niwa A, Chen Y, Nakazaki K, Nomoto J, et al. Frequent inactivation of A20 in B-cell lymphomas. Nature. 2009;459(7247):712–6. https://doi.org/10.1038/nature07969.

Article  CAS  PubMed  Google Scholar 

Puente XS, Pinyol M, Quesada V, Conde L, Ordóñez GR, Villamor N, Escaramis G, Jares P, Beà S, González-Díaz M, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 2011;475(7354):101–5. https://doi.org/10.1186/1741-7015-11-124.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V, Kasper LH, Lerach S, Tang H, Ma J, et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011;471(7337):189–95. https://doi.org/10.1038/nature09730.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salaverria I, Philipp C, Oschlies I, Kohler CW, Kreuz M, Szczepanowski M, Burkhardt B, Trautmann H, Gesk S, Andrusiewicz M, et al. Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly children and young adults. Blood. 2011;118(1):139–47. https://doi.org/10.1182/blood-2011-01-330795.

Article  CAS  PubMed  Google Scholar 

Kucuk C, Jiang B, Hu X, Zhang W, Chan JK, Xiao W, Lack N, Alkan C, Williams JC, Avery KN, et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells. Nat Commun. 2015;6(1):6025. https://doi.org/10.1038/ncomms7025.

Article  CAS  PubMed  Google Scholar 

GTEx Consortium. The GTEx consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369(6509):1318–30. https://doi.org/10.1126/science.aaz1776.

Article  CAS  Google Scholar 

Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, Burgess S, Jiang T, Paige E, Surendran P, et al. Genomic atlas of the human plasma proteome. Nature. 2018;558(7708):73–9. https://doi.org/10.1038/s41586-018-0175-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wingo AP, Liu Y, Gerasimov ES, Gockley J, Logsdon BA, Duong DM, Dammer EB, Robins C, Beach TG, Reiman EM, et al. Integrating human brain proteomes with genome-wide association data implicates new proteins in alzheimer’s disease pathogenesis. Nat Genet. 2021;53(2):143–6. https://doi.org/10.1038/s41588-020-00773-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mancuso N, Freund MK, Johnson R, Shi H, Kichaev G, Gusev A, Pasaniuc B. Probabilistic fine-mapping of transcriptome-wide association studies. Nat Genet. 2019;51(4):675–82. https://doi.org/10.1038/s41588-019-0367-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Porcu E, Rüeger S, Lepik K, Santoni FA, Reymond A, Kutalik Z. Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits. Nat Commun. 2019;10(1):3300. https://doi.org/10.1038/s41467-019-10936-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hormozdiari F, van de Bunt M, Segrè AV, Li X, Joo JWJ, Bilow M, Sul JH, Sankararaman S, Pasaniuc B, Eskin E. Colocalization of GWAS and eQTL signals detects target genes. Am J Hum Genet. 2018;102(6):1185–94. https://doi.org/10.1016/j.ajhg.2016.10.003.

Article  CAS  Google Scholar 

Wainberg M, Sinnott-Armstrong N, Mancuso N, Barbeira AN, Knowles DA, Golan D, et al. Opportunities and challenges for transcriptome-wide association studies. Nat Genet. 2019;51(4):592–9. https://doi.org/10.1038/s41588-019-0385-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu B, Gloudemans MJ, Rao AS, Ingelsson E, Montgomery SB. Abundant associations with gene expression complicate GWAS follow-up. Nat Genet. 2019;51(5):768–9. https://doi.org/10.1038/s41588-019-0404-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu Y, Zeng J, Zhang F, Zhu Z, Qi T, Zheng Z, Lloyd-Jones LR, Marioni RE, Martin NG, Montgomery GW, et al. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nat Commun. 2018;9(1):918. https://doi.org/10.1038/s41467-018-03371-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Küppers R. The biology of hodgkin’s lymphoma. Nat Rev Cancer. 2009;9(1):15–27. https://doi.org/10.1038/nrc2542.

Article  CAS  PubMed  Google Scholar 

Bargou RC, Emmerich F, Krappmann D, et al. Constitutive nuclear factor-κB–RelA activation is required for proliferation and survival of hodgkin’s disease tumor cells. J Clin Investig. 1997;100(12):2961–9. https://doi.org/10.1172/JCI119847.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tiacci E, Döring C, Brune V, et al. An oncogenic role for EBV-encoded MicroRNAs in Burkitt lymphoma and hodgkin’s lymphoma is based on their ability to manipulate the immune environment. Blood. 2012;119(26):6667–70. https://doi.org/10.1182/blood-2012-03-416032.

Article  CAS  Google Scholar 

Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BW, Jansen R, de Geus EJC, Boomsma D, Wright FA, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48(3):245–52. https://doi.org/10.1038/ng.3506.

Article  CAS  PubMed  PubMed Central  Google Scholar 

The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526(7571):68–74. https://doi.org/10.1038/nature15393.

Article  CAS  Google Scholar 

Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, Montgomery GW, Goddard ME, Wray NR, Visscher PM, Yang J. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48(5):481–7. https://doi.org/10.1038/ng.3538.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif