Formulation and clinical translation of inhalable nanomedicines for the treatment and prevention of pulmonary infectious diseases

Fauci AS. Infectious diseases: Considerations for the 21st century. Clin Infect Dis [Internet]. Oxford Academic; 2001 [cited 2024 Aug 13]. p. 675–85. Available from: https://doi.org/10.1086/319235

Daniel EF, Cameron TM, Warunya P, Ralph JP, Eric JS, Carleen S, et al. A Comparison between Two Pathophysiologically Different yet Microbiologically Similar Lung Diseases: Cystic Fibrosis and Chronic Obstructive Pulmonary Disease. Int J Respir Pulm Med [Internet]. 2018 [cited 2025 Feb 25];5:098. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC6322854/

Ahmed SK, Hussein S, Qurbani K, Ibrahim RH, Fareeq A, Mahmood KA, et al. Antimicrobial resistance: Impacts, challenges, and future prospects. J Med Surgery, Public Heal. 2024;2:100081.

Article  Google Scholar 

Lycett SJ, Duchatel F, Digard P. A brief history of bird flu [Internet]. Philos. Trans R Soc B Biol Sci Royal Soc 2019 [cited 2024 Oct 1]. Available from: https://doi.org/10.1098/rstb.2018.0257

Blümel J, Burger R, Drosten C, Gröner A, Gürtler L, Heiden M, et al. Influenza virus [Internet]. Transfus. Med. Hemotherapy. Karger Publishers; 2009 [cited 2024 Aug 12]. p. 32–9. Available from: /pmc/articles/PMC2928832/

Branche AR, Falsey AR. Parainfluenza Virus Infection. Semin Respir Crit Care Med [Internet]. 2016 [cited 2024 Aug 12];37:538–54. Available from: /pmc/articles/PMC7171724/

Royston L, Tapparel C. Rhinoviruses and respiratory enteroviruses: Not as simple as ABC [Internet]. Viruses. Multidisciplinary Digital Publishing Institute (MDPI); 2016 [cited 2024 Oct 1]. Available from: /pmc/articles/PMC4728576

Hayashi S, Hogg JC. Adenovirus infections and lung disease [Internet]. Curr. Opin. Pharmacol. Elsevier; 2007 [cited 2024 Oct 1]. p. 237–43. Available from: /pmc/articles/PMC7185625/

Rosman FC, Mistchenko AS. Acute and chronic human adenovirus pneumonia: Cellular and extracellular matrix components. Pediatr Pathol Lab Med [Internet]. 1996 [cited 2024 Aug 12];16:521–41. Available from: https://doi.org/10.1080/15513819609168688

Ochani RK, Asad A, Yasmin F, Shaikh S, Khalid H, Batra S, et al. Covid-19 pandemic: From origins to outcomes. A comprehensive review of viral pathogenesis, clinical manifestations, diagnostic evaluation, and management [Internet]. Infez. Med. 2021 [cited 2024 Oct 1]. p. 20–36. Available from: https://infezmed.it/media/journal/Vol_29_1_2021_3.pdf

Khalbuss WE, Laucirica R, Pantanowitz L. Pulmonary Infections. Cytopathol Infect Dis [Internet]. 2012 [cited 2024 Aug 12];17:121. Available from: /pmc/articles/PMC7120578/

Dawre S, Maru S. Human respiratory viral infections: Current status and future prospects of nanotechnology-based approaches for prophylaxis and treatment. Life Sci. Pergamon; 2021. p. 119561

Lee KY, Youn YS, Lee JW, Kang JH. Mycoplasma pneumoniae pneumonia, bacterial pneumonia and viral pneumonia. J Pediatr (Rio J) [Internet]. 2010 [cited 2024 Aug 12];86:448–50. Available from: https://www.scielo.br/j/jped/a/dyLGz4xWRLCZKgqRHqpcHTM/?lang=en

Menéndez R, Cordero PJ, Santos M, Gobernado M, Marco V. Pulmonary infection with Nocardia species: A report of 10 cases and review. Eur Respir J [Internet]. 1997 [cited 2024 Aug 12];10:1542–6. Available from: https://erj.ersjournals.com/content/10/7/1542

Koch A, Mizrahi V. Mycobacterium tuberculosis [Internet]. Trends Microbiol. Trends Microbiol; 2018 [cited 2024 Oct 1]. p. 555–6. Available from: https://pubmed.ncbi.nlm.nih.gov/29580884/

Griffith DE. Treatment of Mycobacterium avium Complex (MAC). Semin Respir Crit Care Med [Internet]. 2018 [cited 2024 Oct 1];39:351–61. Available from: https://doi.org/10.1055/s-0038-1660472

Mabeza GF, Macfarlane J. Pulmonary actinomycosis. Eur Respir J [Internet]. 2003 [cited 2024 Aug 12];21:545–51. Available from: https://erj.ersjournals.com/content/21/3/545

Ciofu O, Hansen CR, Høiby N. Respiratory bacterial infections in cystic fibrosis [Internet]. Curr. Opin. Pulm. Med. Curr Opin Pulm Med; 2013 [cited 2024 Oct 1]. p. 251–8. Available from: https://pubmed.ncbi.nlm.nih.gov/23449384/

Terlizzi V, Tomaselli M, Giacomini G, Dalpiaz I, Chiappini E. Stenotrophomonas maltophilia in people with Cystic Fibrosis: a systematic review of prevalence, risk factors and management [Internet]. Eur. J. Clin. Microbiol. Infect. Dis. Springer Science and Business Media Deutschland GmbH; 2023 [cited 2024 Oct 1]. p. 1285–96. Available from: https://doi.org/10.1007/s10096-023-04648-z

Rajerison M, Ratsitorahina M, Andrianaivoarimanana V. Plague. Manson’s Trop Dis Twenty-Third Ed. W.B. Saunders; 2014. p. 404–9

Williamson ED. Plague. Vaccines Biodefense Emerg Neglected Dis [Internet]. StatPearls Publishing; 2008 [cited 2024 Oct 8]. p. 1081–98. Available from: https://www.ncbi.nlm.nih.gov/books/NBK549855/

Donoghue M, Seibel NL, Francis PS, Walsh TJ. Fungal infections of the respiratory tract. Clin Mycol with CD-ROM [Internet]. Elsevier; 2009 [cited 2024 Aug 12]. p. 561–89. Available from: https://linkinghub.elsevier.com/retrieve/pii/B978141605680500027X

Howard-Jones AR, Sparks R, Pham D, Halliday C, Beardsley J, Chen SCA. Pulmonary Cryptococcosis [Internet]. J. Fungi. Multidisciplinary Digital Publishing Institute (MDPI); 2022 [cited 2024 Aug 12]. Available from: /pmc/articles/PMC9696922/

Lamoth F, Calandra T. Pulmonary aspergillosis: diagnosis and treatment. Eur Respir Rev [Internet]. 2022 [cited 2024 Aug 12];31. Available from: /pmc/articles/PMC9724826/

Kumar M, Hilles AR, Almurisi SH, Bhatia A, Mahmood S. Micro and nano-carriers-based pulmonary drug delivery system: Their current updates, challenges, and limitations – A review. JCIS Open. Elsevier; 2023. p. 100095

Johns Hopkins University. COVID-19 Map - Johns Hopkins Coronavirus Resource Center [Internet]. Johns Hopkins Coronavirus Resour. Cent. 2023 [cited 2024 Sep 29]. p. 1. Available from: https://coronavirus.jhu.edu/map.html

Brasil P, Calvet GA, Siqueira AM, Wakimoto M, de Sequeira PC, Nobre A, et al. Zika Virus Outbreak in Rio de Janeiro, Brazil: Clinical Characterization, Epidemiological and Virological Aspects. PLoS Negl Trop Dis [Internet]. 2016 [cited 2024 Aug 13];10. Available from: https://doi.org/10.1371/journal.pntd.0004636

Xie Y, Luo X, He Z, Zheng Y, Zuo Z, Zhao Q, et al. VirusMap: A visualization database for the influenza A virus. J. Genet. Genomics. Institute of Genetics and Developmental Biology; 2017. p. 281–4

WHO. Avian influenza [Internet]. WHO. 2024 [cited 2024 Sep 29]. Available from: https://www.who.int/westernpacific/wpro-emergencies/surveillance/avian-influenza

Rosen H, Abribat T. The rise and rise of drug delivery. Nat Rev Drug Discov. 2005;4:381–5.

Article  CAS  PubMed  Google Scholar 

Rani S, Gothwal A, Pandey PK, Chauhan DS, Pachouri PK, Gupta UD, et al. HPMA-PLGA Based Nanoparticles for Effective In Vitro Delivery of Rifampicin. Pharm Res [Internet]. 2019 [cited 2024 Dec 17];36:1–12. Available from: https://doi.org/10.1007/s11095-018-2543-x

Long H, Li X, Sang Z, Mei L, Yang T, Li Z, et al. Improving the pharmacokinetics and tissue distribution of pyrinezolid by self-assembled polymeric micelles. Colloids Surfaces B Biointerfaces. 2017;156:149–56.

Article  CAS  PubMed  Google Scholar 

Olivera ME, Manzo RH, Junginger HE, Midha KK, Shah VP, Stavchansky S, et al. Biowaiver monographs for immediate release solid oral dosage forms: Ciprofloxacin hydrochloride. J Pharm Sci. 2011;100:22–33.

Article  CAS  PubMed  Google Scholar 

Wu ZL, Zhao J, Xu R. Recent advances in oral nano-antibiotics for bacterial infection therapy [Internet]. Int. J. Nanomedicine. Dove Medical Press Ltd; 2020 [cited 2024 Dec 17]. p. 9587–610. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC7719120/

Roger E, Lagarce F, Garcion E, Benoit JP. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery [Internet]. Nanomedicine. 2010 [cited 2024 Aug 13]. p. 287–306. Available from: https://doi.org/10.2217/nnm.09.110

Marco M Di, Shamsuddin S, Razak KA, Aziz AA, Devaux C, Borghi E, et al. Overview of the main methods used to combine proteins with nanosystems: Absorption, bioconjugation, and encapsulation [Internet]. Int. J. Nanomedicine. 2010 [cited 2024 Aug 13]. p. 37–49. Available from: https://doi.org/10.2147/IJN.S6458

Patton JS, Byron PR. Inhaling medicines: Delivering drugs to the body through the lungs [Internet]. Nat. Rev. Drug Discov. Nature Publishing Group; 2007 [cited 2024 Aug 13]. p. 67–74. Available from: https://www.nature.com/articles/nrd2153

Sung JC, Pulliam BL, Edwards DA. Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 2007. p. 563–70

Bur M, Henning A, Hein S, Schneider M, Lehr CM. Inhalative nanomedicine-opportunities and challenges. Inhal. Toxicol. 2009. p. 137–43

Andrade F, Videira M, Ferreira D, Sarmento B. Nanocarriers for pulmonary administration of peptides and therapeutic proteins [Internet]. Nanomedicine. 2011 [cited 2024 Aug 13]. p. 123–41. Available from: https://doi.org/10.2217/nnm.10.143

Sibum I, Hagedoorn P, de Boer AH, Frijlink HW, Grasmeijer F. Challenges for pulmonary delivery of high powder doses. Int J Pharm. 2018;548:325–36.

Article  CAS  PubMed  Google Scholar 

Newman SP. Drug delivery to the lungs: Challenges and opportunities [Internet]. Ther. Deliv. Taylor & Francis; 2017 [cited 2024 Oct 2]. p. 647–61. Available from: https://doi.org/10.4155/tde-2017-0037

Meers P, Neville M, Malinin V, Scotto AW, Sardaryan G, Kurumunda R, et al. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J Antimicrob Chemother [Internet]. 2008 [cited 2024 Aug 13];61:859–68. Available from: https://academic.oup.com/jac/article-abstract/61/4/859/851418

Dharmadhikari AS, Kabadi M, Gerety B, Hickey AJ, Fourie PB, Nardell E. Phase I, single-dose, dose-escalating study of inhaled dry powder capreomycin: A new approach to therapy of drug-resistant tuberculosis. Antimicrob Agents Chemother [Internet]. 2013 [cited 2020 Jul 6];57:2613–9. Available from: http://aac.asm.org/

Gairola A, Benjamin A, Weatherston JD, Cirillo JD, Wu HJ. Recent Developments in Drug Delivery for Treatment of Tuberculosis by Targeting Macrophages [Internet]. Adv. Ther. NIH Public Access; 2022 [cited 2024 Oct 2]. Available from: /pmc/articles/PMC9531895/

Hou F, Xiao K, Tang L, Xie L. Diversity of Macrophages in Lung Homeostasis and Diseases [Internet]. Front. Immunol. Frontiers Media S.A.; 2021 [cited 2024 Oct 2]. p. 753940. Available from: www.frontiersin.org

Ahmed R, Aucamp M, Samsodien H. Surface-modified dendrimer nanoconjugate for targeting delivery of rifampicin. J Drug Deliv Sci Technol [Internet]. 2024 [cited 2024 Nov 26];106441. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1773224724011109

Heo J, Sobiech TA, Kutscher HL, Chaves L, Sukumaran DK, Karki S, et al. Hybrid Curdlan Poly(γ -Glutamic Acid) Nanoassembly for Immune Modulation in Macrophage. Macromol Biosci [Internet]. 2021 [cited 2025 Feb 25];21:2000358. Available from: https://doi.org/10.1002/mabi.202000358

Gadekar V, Borade Y, Kannaujia S, Rajpoot K, Anup N, Tambe V, et al. Nanomedicines accessible in the market for clinical interventions. J. Control. Release. Elsevier; 2021. p. 372–97

Ahmed R, Aucamp M, Ebrahim N, Samsodien H. Supramolecular assembly of rifampicin and PEGylated PAMAM dendrimer as a novel conjugate for tuberculosis. J Drug Deliv Sci Technol. 2021;66:102773.

Article  CAS  Google Scholar 

Kutscher HL, Tamblin M, Karki S, Chaves L, Baird M, Parvin A, et al. Inhalational Delivery of β-glucan-chitosan-poly(lactic co-glycolic) acid Nanoparticles Enhance Alveolar Macrophage Rifampin Concentrations for the Treatment of Tuberculosis. Adv Ther [Internet]. 2024 [cited 2024 Oct 7];2400057. Available from: https://doi.org/10.1002/adtp.202400057

Paranjpe M, Müller-Goymann CC. Nanoparticle-mediated pulmonary drug delivery: A review [Internet]. Int. J. Mol. Sci. Multidisciplinary Digital Publishing Institute (MDPI); 2014 [cited 2024 Oct 3]. p. 5852–73. Available from: /pmc/articles/PMC4013600/

Sung JC, Pulliam BL, Edwards DA. Nanoparticles for drug delivery to the lungs [Internet]. Trends Biotechnol. Elsevier Current Trends; 2007 [cited 2017 Nov 14]. p. 563–70. Available from: http://www.sciencedirect.com/science/article/pii/S0167779907002703

Mehanna MM, Mohyeldin SM, Elgindy NA. Respirable nanocarriers as a promising strategy for antitubercular drug delivery [Internet]. J. Control. Release. 2014 [cited 2024 Jun 13]. p. 183–97. Available from: https://www.sciencedirect.com/science/article/pii/S0168365914003411

Ferron GA, Upadhyay S, Zimmermann R, Karg E. Model of the Deposition of Aerosol Particles in the Respiratory Tract of the Rat. II. Hygroscopic Particle Deposition. J Aerosol Med Pulm Drug Deliv [Internet]. 2013;26:101–19. https://doi.org/10.1089/jamp.2011.0965.

Article  CAS  PubMed  Google Scholar 

He S, Gui J, Xiong K, Chen M, Gao H, nanobiotechnology YF-J of, et al. 2024 A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases. SpringerS He, J Gui, K Xiong, M Chen, H Gao, Y Fu J Nanobiotechnol 2022•Springer 20:101. https://doi.org/10.1186/s12951-022-01307-x

Chan HW, Chow S, Zhang X, Zhao Y, Tong HHY, Chow SF. Inhalable Nanoparticle-based Dry Powder Formulations for Respiratory Diseases: Challenges and Strategies for Translational Research [Internet]. AAPS PharmSciTech Springer. 2023;24:1–28. https://doi.org/10.1208/s12249-023-02559-y.

Article  Google Scholar 

NIH. PubMed [Internet]. NIH. 2024 [cited 2024 Jul 25]. Available from: https://pubmed.ncbi.nlm.nih.gov/

Cipolla D, Wu H, Eastman S, Redelmeier T, Gonda I, Chan HK. Development and characterization of an in vitro release assay for liposomal ciprofloxacin for inhalation. J Pharm Sci [Internet]. 2014 [cited 2024 Aug 15];103:314–27. Available from: https://www.sciencedirect.com/science/article/pii/S0022354915307747

Li Z, Perkins W, Cipolla D. Robustness of aerosol delivery of amikacin liposome inhalation suspension using the eFlow® Technology. Eur J Pharm Biopharm. 2021;166:10–8.

Article  CAS  PubMed  Google Scholar 

Shirley M. Amikacin Liposome Inhalation Suspension: A Review in Mycobacterium avium Complex Lung Disease. Drugs [Internet]. 2019 [cited 2025 Feb 25];79:555–62. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC6445814/

Brillault J, Tewes F. Control of the lung residence time of highly permeable molecules after nebulization: Example of the fluoroquinolones [Internet]. Pharmaceutics. Multidisciplinary Digital Publishing Institute; 2020 [cited 2024 Dec 17]. p. 387. Available from: https://www.mdpi.com/1999-4923/12/4/387/htm

EMA. Linhaliq | European Medicines Agency (EMA) [Internet]. EMA. 2019 [cited 2024 Aug 14]. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/linhaliq

Russo M, Mendes-Corrêa MC, Lins BB, Kersten V, Pernambuco Filho PCA, Martins TR, et al. Intranasal Liposomal Formulation of Spike Protein Adjuvanted with CpG Protects and Boosts Heterologous Immunity of hACE2 Transgenic Mice to SARS-CoV-2 Infection. Vaccines [Internet]. 2023 [cited 2024 Aug 23];11:1732. Available from: https://www.mdpi.com/2076-393X/11/11/1732/htm

Hamed A, Osman R, Al-Jamal KT, Holayel SM, Geneidi AS. Enhanced antitubercular activity, alveolar deposition and macrophages uptake of mannosylated stable nanoliposomes. J Drug Deliv Sci Technol. 2019;51:513–23.

Article  CAS  Google Scholar 

Zaru M, Sinico C, De Logu A, Caddeo C, Lai F, Manca ML, et al. Rifampicin-loaded liposomes for the passive targeting to alveolar macrophages: In vitro and in vivo evaluation. J Liposome Res [Internet]. 2009;19:68–76. https://doi.org/10.1080/08982100802610835.

Article  CAS  PubMed  Google Scholar 

Thiyagarajan D, Huck B, Nothdurft B, Koch M, Rudolph D, Rutschmann M, et al. Spray-dried lactose-leucine microparticles for pulmonary delivery of antimycobacterial nanopharmaceuticals. Drug Deliv Transl Res [Internet]. 2021;11:1766–78. https://doi.org/10.1007/s13346-021-01011-7.

Article  CAS  PubMed  Google Scholar 

Vyas SP, Kannan ME, Jain S, Mishra V, Singh P. Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int J Pharm [Internet]. 2004 [cited 2017 Nov 9];269:37–49. Available from: http://www.sciencedirect.com/science/article/pii/S0378517303004757

Maretti E, Rustichelli C, Gualtieri ML, Costantino L, Siligardi C, Miselli P, et al. The impact of lipid corona on rifampicin intramacrophagic transport using inhaled solid lipid nanoparticles surface-decorated with a mannosylated surfactant. Pharmaceutics [Internet]. 2019 [cited 2024 Aug 21];11:508. Available from: https://www.mdpi.com/1999-4923/11/10/508/htm

Tulbah AS, Lee WH. Physicochemical characteristics and in vitro toxicity/anti-sars-cov-2 activity of favipiravir solid lipid nanoparticles (Slns). Pharmaceuticals [Internet]. 2021 [cited 2024 Aug 22];14:1059. Available from: https://www.mdpi.com/1424-8247/14/10/1059/htm

Mao L, Chen Z, Wang Y, Chen C. Design and application of nanoparticles as vaccine adjuvants against human corona virus infection. J Inorg Biochem. 2021;219:111454.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith DJ, Bot S, Dellamary L, Bot A. Evaluation of novel aerosol formulations designed for mucosal vaccination against influenza virus. Vaccine. 2003;21:2805–12.

Article  CAS  PubMed  Google Scholar 

Ali H, Akbar M, Iqbal B, Ali F, Sharma NK, Kumar N, et al. Virosome: An engineered virus for vaccine delivery [Internet]. Saudi Pharm. J. Elsevier; 2023 [cited 2024 Oct 6]. p. 752–64. Available from: /pmc/articles/PMC10172599/

Semete B, Booysen L, Lemmer Y, Kalombo L, Katata L, Verschoor J, et al. In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomedicine Nanotechnology, Biol Med [Internet]. 2010 [cited 2024 Aug 16];6:662–71. Available from: https://www.sciencedirect.com/science/article/pii/S1549963410000961

Dube A, Reynolds JL, Law WC, Maponga CC, Prasad PN, Morse GD. Multimodal nanoparticles that provide immunomodulation and intracellular drug delivery for infectious diseases. Nanomedicine Nanotechnology, Biol Med [Interne

Comments (0)

No login
gif