Murakami S, Mealey BL, Mariotti A, Chapple IL. Dental plaque–induced gingival conditions. J Clin Periodontol. 2018;45(20):S17–27. https://doi.org/10.1111/jcpe.12937.
Article CAS PubMed Google Scholar
Khabadze Z, Kulikova A, Generalova Y, Abdulkerimova S, Dashtieva M, Bakaev Y, Kubrin A. The prevalence of inflammatory periodontal diseases (Gingivitis, Periodontitis) among the population. J Int Dent Med Res. 2003;16(4):1830–5.
Al-Shammari KF, Al‐Khabbaz AK, Al‐Ansari JM, Neiva R, Wang HL. Risk indicators for tooth loss due to periodontal disease. J Periodont. 2005;76(11):1910–8. https://doi.org/10.2147/cia.s140791.
Kim S, Kim SG. Advancements in alveolar bone grafting and ridge preservation: a narrative review on materials, techniques, and clinical outcomes. Maxillofac Plast Reconstr Sur. 2024;46(14):1–13. https://doi.org/10.1186/s40902-024-00425-w.
Kuć J, Sierpińska T, Gołębiewska M. Alveolar ridge atrophy related to facial morphology in edentulous patients. Clin Interv Aging. 2017;12:1481–94. https://doi.org/10.2147/cia.s140791.
Article PubMed PubMed Central Google Scholar
Devlin H, Ferguson M. Alveolar ridge resorption and mandibular atrophy. A review of the role of local and systemic factors. Br Dent J. 1991;170:101–4. https://doi.org/10.1038/sj.bdj.4807427.
Article CAS PubMed Google Scholar
Zakrzewski W, Dobrzynski M, Rybak Z, Szymonowicz M, Wiglusz RJ. Selected nanomaterials’ application enhanced with the use of stem cells in acceleration of alveolar bone regeneration during augmentation process. Nanomaterials. 2020;10(6):1216. https://doi.org/10.3390/nano10061216.
Article CAS PubMed PubMed Central Google Scholar
Tsuchida S, Nakayama T. Recent clinical treatment and basic research on the alveolar bone. Biomedicines. 2023;11(3):843. https://doi.org/10.3390/biomedicines11030843.
Article CAS PubMed PubMed Central Google Scholar
Giannobile WV, Berglundh T, Al-Nawas B, Araujo M, Bartold PM, Bouchard P, Chapple I, Gruber R, Lundberg P, Sculean A. Biological factors involved in alveolar bone regeneration: consensus report of working group 1 of the 15th European workshop on periodontology on bone regeneration. J Clin Periodontol. 2019;46(21):6–11. https://doi.org/10.1111/jcpe.13130.
Jafary F, Hanachi P, Gorjipour K. Osteoblast differentiation on collagen scaffold with immobilized alkaline phosphatase. Int J Organ Transpl Med. 2017;8(4):195–202.
Mikami Y, Lee M, Irie S, Honda MJ. Dexamethasone modulates osteogenesis and adipogenesis with regulation of Osterix expression in rat calvaria-derived cells. J Cell Physiol. 2011;226(3):739–48. https://doi.org/10.1002/jcp.22390.
Article CAS PubMed Google Scholar
Chen Y, Li J, Kawazoe N, Chen G. Preparation of dexamethasone-loaded calcium phosphate nanoparticles for the osteogenic differentiation of human mesenchymal stem cells. J Mat Chem B. 2017;5(33):6801–10. https://doi.org/10.1039/c7tb01727h.
Salvi G, Lang N. The effects of non-steroidal anti-inflammatory drugs (selective and non-selective) on the treatment of periodontal diseases. Curr Pharm Des. 2005;11(14):1757–69. https://doi.org/10.2174/1381612053764878.
Article CAS PubMed Google Scholar
Howell T, Jeffcoat M, Goldhaber P, Reddy M, Kaplan M, Johnson H, Hall C, Williams R. Inhibition of alveolar bone loss in Beagles with the NSAID Naproxen. J Periodont Res. 1991;26(6):498–501. https://doi.org/10.1111/j.1600-0765.1991.tb01801.x.
Li QY, Zhang JN, Chen BZ, Wang QL, Guo XD. A solid polymer microneedle patch pretreatment enhances the permeation of drug molecules into the skin. RSC Adv. 2017;7(28):15408–15. https://doi.org/10.1039/C6RA26759A.
Samanthula KS, Satla SR, Bairi AG. Bioadhesive polymers, permeation enhancers and types of dosage forms for buccal drug delivery. J Drug Deliv Ther. 2021;11(4):138–45. https://doi.org/10.22270/jddt.v11i1.4495.
Caffarel-Salvador E, Kim S, Soares V, Tian RY, Stern SR, Minahan D, Yona R, Lu X, Zakaria FR, Collins J, Wainer J, Wong J, McManus R, Tamang S, McDonnell S, Ishida K, Hayward A, Liu X, Hubálek F, Fels J, Vegge A, Frederiksen MR, Rahbek U, Yoshitake T, Fujimoto J, Roxhed N, Langer R, Traverso G. A microneedle platform for buccal macromolecule delivery. Sci Adv. 2021;7(4):eabe2620. https://doi.org/10.1126/sciadv.abe2620. PMID: 33523951; PMCID: PMC10964974.
Article CAS PubMed PubMed Central Google Scholar
Khairiyah K, Asaf MB, Achmad NAA, et al. Enhancing Efavirenz bioavailability via Polymer-Based buccal administration: optimization and characterization of Nanocrystal-Loaded dissolving microneedle delivery systems. AAPS J. 2025;27:64. https://doi.org/10.1208/s12248-025-01047-4.
Article CAS PubMed Google Scholar
Cao X, Wu B, Chen J, Liu Z, Yang Y, Li S, Huang H. Hydroxypropyl Cellulose-Based orally dissolving film loaded with insoluble dexamethasone for treatment of oral ulcers. Mol Pharm. 2024;21(8):4012–23.
Article CAS PubMed Google Scholar
Hassan MA, Barakat NS, El-Badry M, Shehata SM. Formulation and in vitro/in vivo evaluation of Naproxen mucoadhesive buccal patches for local effect. J Drug Deliv Sci Technol. 2021;21(5):423.
Harvey AJ, Kaestner SA, Sutter DE, Harvey NG, Mikszta JA, Pettis RJ. Microneedle-based intradermal delivery enables rapid lymphatic uptake and distribution of protein drugs. Pharm Res. 2011;28(1):107–16. https://doi.org/10.1007/s11095-010-0123-9.
Article CAS PubMed Google Scholar
Li Y, Bi D, Hu Z, Yang Y, Liu Y, Leung WK. Hydrogel-forming microneedles with applications in oral diseases management. Mater. 2023;16(13):4805.
Giuliano E, Paolino D, Fresta M, Cosco D. Drug-loaded biocompatible nanocarriers embedded in poloxamer 407 hydrogels as therapeutic formulations. Medicines. 2018;6(1):7. https://doi.org/10.3390/medicines6010007.
Article CAS PubMed PubMed Central Google Scholar
Chen Y, Lee JH, Meng M, Cui N, Dai CY, Jia Q, Lee ES, Jiang HB. An overview on thermosensitive oral gel based on poloxamer 407. Materials. 2021;14(18):4522. https://doi.org/10.3390/ma14164522.
Article CAS PubMed PubMed Central Google Scholar
Sivaraman A, Banga AK. Novel in situ forming hydrogel microneedles for transdermal drug delivery. Drug Deliv Transl Res. 2017;7:16–26.
Article CAS PubMed Google Scholar
Dew N, Edwards K, Eriksson J, Edsman K, Björk E. Gel formulations containing catanionic vesicles composed of Alprenolol and SDS: effects of drug release and skin penetration on aggregate structure. Colloids Surf B Biointerfaces. 2012;89:53–60. https://doi.org/10.1016/j.colsurfb.2011.08.022.
Article CAS PubMed Google Scholar
Hirun N, Tantishaiyakul V, Sangfai T, Boonlai W, Soontaranon S, Rugmai S. The effect of poly(acrylic acid) on temperature-dependent behaviors and structural evolution of poloxamer 407. Polym Int. 2021;70(10):1282–9. https://doi.org/10.1002/pi.6197.
Baloglu E, Karavana SY, Senyigit ZA, Hilmioglu-Polat S, Metin DY, Zekioglu O, Guneri T, Jones DS. In-situ gel formulations of econazole nitrate: Preparation and in-vitro and in-vivo evaluation. J Pharm Pharmacol. 2011;63(10):1274–82.
Article CAS PubMed Google Scholar
Chen J, Zhou R, Li L, Li B, Zhang X, Su J. Mechanical, rheological and release behaviors of a poloxamer 407/poloxamer 188/carbopol 940 thermosensitive composite hydrogel. Molecules. 2013;18(10):12415–25. https://doi.org/10.3390/molecules181012415.
Article CAS PubMed PubMed Central Google Scholar
Fathalla ZM, Khaled KA, Hussein AK, Alany RG, Vangala A. Formulation and corneal permeation of ketorolac tromet
Comments (0)