Optimum blue light exposure: a means to increase cell-specific productivity in Chinese hamster ovary cells

Ahn WS, Jeon J-J, Jeong Y-R, Lee SJ, Yoon SK (2008) Effect of culture temperature on erythropoietin production and glycosylation in a perfusion culture of recombinant CHO cells. Biotechnol Bioeng 101:1234–1244. https://doi.org/10.1002/bit.22006

Article  CAS  PubMed  Google Scholar 

Alhuthali S, Kotidis P, Kontoravdi C (2021) Osmolality effects on CHO cell growth, cell volume, antibody productivity and glycosylation. Int J Mol Sci 22. https://doi.org/10.3390/ijms22073290

Antwi EB, Marrakchi Y, Çiçek Ö, Brox T, Di Ventura B (2023) Requirements for mammalian promoters to decode transcription factor dynamics. Nucleic Acids Res 51:4674–4690. https://doi.org/10.1093/nar/gkad273

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bacchus W, Fussenegger M (2012) The use of light for engineered control and reprogramming of cellular functions. Curr Opin Biotechnol 23:695–702. https://doi.org/10.1016/j.copbio.2011.12.004

Article  CAS  PubMed  Google Scholar 

Backliwal G, Hildinger M, Kuettel I, Delegrange F, Hacker DL, Wurm FM (2008) Valproic acid: a viable alternative to sodium butyrate for enhancing protein expression in mammalian cell cultures. Biotechnol Bioeng 101:182–189. https://doi.org/10.1002/bit.21882

Article  CAS  PubMed  Google Scholar 

Basu U, Pant I, Hussain A, Kondaiah P, Chakravarty AR (2015) Iron(III) complexes of a pyridoxal Schiff base for enhanced cellular uptake with selectivity and remarkable photocytotoxicity. Inorg Chem 54:3748–3758. https://doi.org/10.1021/ic5027625

Article  CAS  PubMed  Google Scholar 

Becerra S, Berrios J, Osses N, Altamirano C (2012) Exploring the effect of mild hypothermia on CHO cell productivity. Biochem Eng J 60:1–8. https://doi.org/10.1016/j.bej.2011.10.003

Article  CAS  Google Scholar 

Becker M, Junghans L, Teleki A, Bechmann J, Takors R (2019) Perfusion cultures require optimum respiratory ATP supply to maximize cell-specific and volumetric productivities. Biotechnol Bioeng 116:951–960. https://doi.org/10.1002/bit.26926

Article  CAS  PubMed  Google Scholar 

Becker M, Junghans L, Teleki A, Bechmann J, Takors R (2019) The less the better: how suppressed base addition boosts production of monoclonal antibodies with Chinese hamster ovary cells. Front Bioeng Biotechnol 7:76. https://doi.org/10.3389/fbioe.2019.00076

Article  PubMed  PubMed Central  Google Scholar 

Cantin AM, North SL, Hubbard RC, Crystal RG (1987) Normal alveolar epithelial lining fluid contains high levels of glutathione. J Appl Physiol (1985) 63:152–157. https://doi.org/10.1152/jappl.1987.63.1.152

Article  CAS  PubMed  Google Scholar 

Catalano MG, Fortunati N, Pugliese M, Costantino L, Poli R, Bosco O, Boccuzzi G (2005) Valproic acid induces apoptosis and cell cycle arrest in poorly differentiated thyroid cancer cells. J Clin Endocrinol Metab 90:1383–1389. https://doi.org/10.1210/jc.2004-1355

Article  CAS  PubMed  Google Scholar 

D’Anna JA, Tobey RA, Gurley LR (1980) Concentration-dependent effects of sodium butyrate in Chinese hamster cells: cell-cycle progression, inner-histone acetylation, histone H1 dephosphorylation, and induction of an H1-like protein. Biochemistry 19:2656–2671. https://doi.org/10.1021/bi00553a019

Article  CAS  PubMed  Google Scholar 

de Boer L, Gray PP, Sunstrom N-A (2004) Enhanced productivity of G1 phase Chinese hamster ovary cells using the GADD153 promoter. Biotechnol Lett 26:61–65. https://doi.org/10.1023/b:bile.0000009462.10772.a4

Article  PubMed  Google Scholar 

Ding C, Ardeshna H, Gillespie C, Ierapetritou M (2022) Process design of a fully integrated continuous biopharmaceutical process using economic and ecological impact assessment. Biotechnol Bioeng 119:3567–3583. https://doi.org/10.1002/bit.28234

Article  CAS  PubMed  Google Scholar 

Dutton RL, Scharer J, Moo-Young M (2006) Cell cycle phase dependent productivity of a recombinant Chinese hamster ovary cell line. Cytotechnology 52:55–69. https://doi.org/10.1007/s10616-006-9041-4

Article  CAS  PubMed  Google Scholar 

Edwards AM, Silva E, Jofré B, Becker MI, de Ioannes AE (1994) Visible light effects on tumoral cells in a culture medium enriched with tryptophan and riboflavin. J Photochem Photobiol B 24:179–186. https://doi.org/10.1016/1011-1344(94)07020-2

Article  CAS  PubMed  Google Scholar 

Farid SS, Baron M, Stamatis C, Nie W, Coffman J (2020) Benchmarking biopharmaceutical process development and manufacturing cost contributions to R&D. Mabs 12:1754999. https://doi.org/10.1080/19420862.2020.1754999

Article  PubMed  PubMed Central  Google Scholar 

Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194:7–15. https://doi.org/10.1083/jcb.201102095

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fiore M, Degrassi F (1999) Dimethyl sulfoxide restores contact inhibition-induced growth arrest and inhibits cell density-dependent apoptosis in hamster cells. Exp Cell Res 251:102–110. https://doi.org/10.1006/excr.1999.4542

Article  CAS  PubMed  Google Scholar 

Fiore M, Zanier R, Degrassi F (2002) Reversible G(1) arrest by dimethyl sulfoxide as a new method to synchronize Chinese hamster cells. Mutagenesis 17:419–424. https://doi.org/10.1093/mutage/17.5.419

Article  CAS  PubMed  Google Scholar 

Fletcher T, Harris H (2016) Safety drives innovation in cell-culture media technology. BioPharm Int 29:22–27

Google Scholar 

Fox SR, Tan HK, Tan MC, Wong SCNC, Yap MGS, Wang DIC (2005) A detailed understanding of the enhanced hypothermic productivity of interferon-gamma by Chinese-hamster ovary cells. Biotechnol Appl Biochem 41:255–264. https://doi.org/10.1042/BA20040066

Article  CAS  PubMed  Google Scholar 

Fussenegger M, Mazur X, Bailey JE (1997) A novel cytostatic process enhances the productivity of Chinese hamster ovary cells. Biotechnol Bioeng 55:927–939. https://doi.org/10.1002/(SICI)1097-0290(19970920)55:6%3c927:AID-BIT10%3e3.0.CO;2-4

Article  CAS  PubMed  Google Scholar 

Georgiou-Siafis SK, Tsiftsoglou AS (2023) The key role of GSH in keeping the redox balance in mammalian cells: mechanisms and significance of GSH in detoxification via formation of conjugates. Antioxidants (Basel) 12. https://doi.org/10.3390/antiox12111953

Gorman CM, Howard BH, Reeves R (1983) Expression of recombinant plasmids in mammalian cells is enhanced by sodium butyrate. Nucleic Acids Res 11:7631–7648. https://doi.org/10.1093/nar/11.21.7631

Article  CAS  PubMed  PubMed Central  Google Scholar 

Handlogten MW, Lee-O’Brien A, Roy G, Levitskaya SV, Venkat R, Singh S, Ahuja S (2018) Intracellular response to process optimization and impact on productivity and product aggregates for a high-titer CHO cell process. Biotechnol Bioeng 115:126–138. https://doi.org/10.1002/bit.26460

Article  CAS  PubMed  Google Scholar 

Hendrick V, Winnepenninckx P, Abdelkafi C, Vandeputte O, Cherlet M, Marique T, Renemann G, Loa A, Kretzmer G, Werenne J (2001) Increased productivity of recombinant tissular plasminogen activator (t-PA) by butyrate and shift of temperature: a cell cycle phases analysis. Cytotechnology 36:71–83. https://doi.org/10.1023/A:1014088919546

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herz F, Halwer M (1982) Synergistic induction of alkaline phosphatase in colonic carcinoma cells by sodium butyrate and hyperosmolality. Biochim Biophys Acta 718:220–223. https://doi.org/10.1016/0304-4165(82)90222-7

Article  CAS  PubMed  Google Scholar 

Hoffman SM, Alvarez M, Alfassi G, Rein DM, Garcia-Echauri S, Cohen Y, Avalos JL (2021) Cellulosic biofuel production using emulsified simultaneous saccharification and fermentation (eSSF) with conventional and thermotolerant yeasts. Biotechnol Biofuels 14:157. https://doi.org/10.1186/s13068-021-02008-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hörner M, Gerhardt K, Salave

Comments (0)

No login
gif