Metabolic mechanism of lignin-derived aromatics in white-rot fungi

Akileswaran L, Brock BJ, Cereghino JL, Gold MH (1999) 1,4-Benzoquinone reductase from Phanerochaete chrysosporium: cDNA cloning and regulation of expression. Appl Environ Microbiol 65:415–421. https://doi.org/10.1128/aem.65.2.415-421.1999

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amaya AA, Brzezinski KT, Farrington N, Moran GR (2004) Kinetic analysis of human homogentisate 1,2-dioxygenase. Arch Biochem Biophys 421:135–142. https://doi.org/10.1016/j.abb.2003.10.014

Article  CAS  PubMed  Google Scholar 

Ander P, Eriksson K, Yu H (1983) Vanillic acid metabolism by Sporotrichum pulverulentum: evidence for demethoxylation before ring-cleavage. Arch Microbiol 136:1–6. https://doi.org/10.1007/BF00415600

Article  CAS  Google Scholar 

Asgher M, Bhatti HN, Ashraf M, Legge RL (2008) Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19:771–783. https://doi.org/10.1007/s10532-008-9185-3

Article  CAS  PubMed  Google Scholar 

Barnhart-Dailey MC, Ye D, Hayes DC, Maes D, Simoes CT, Appelhans L, Carroll-Portillo A, Kent MS, Timlin JA (2019) Internalization and accumulation of model lignin breakdown products in bacteria and fungi. Biotechnol Biofuels 12:175. https://doi.org/10.1186/s13068-019-1494-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bautista-Zamudio PA, Flórez-Restrepo MA, López-Legarda X, Monroy-Giraldo LC, Segura-Sánchez F (2023) Biodegradation of plastics by white-rot fungi: A review. Sci Total Environ 901:165950. https://doi.org/10.1016/j.scitotenv.2023.165950

Article  CAS  PubMed  Google Scholar 

Bentil JA, Thygesen A, Mensah M, Lange L, Meyer AS (2018) Cellulase production by white-rot basidiomycetous fungi: solid-state versus submerged cultivation. Appl Microbiol Biotechnol 102:5827–5839. https://doi.org/10.1007/s00253-018-9072-8

Article  CAS  PubMed  Google Scholar 

Brock BJ, Gold MH (1996) 1,4-Benzoquinone reductase from basidiomycete Phanerochaete chrysosporium: spectral and kinetic analysis. Arch Biochem Biophys 331:31–40. https://doi.org/10.1006/abbi.1996.0279

Article  CAS  PubMed  Google Scholar 

Brock BJ, Rieble S, Gold MH (1995) Purification and characterization of 1,4-benzoquinone reductase from the basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 61:3076–3081. https://doi.org/10.1128/aem.61.8.3076-3081.1995

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen M, Li Y, Lu F, Luterbacher JS, Ralph J (2023) Lignin hydrogenolysis: phenolic monomers from lignin and associated phenolates across plant clades. ACS Sustainable Chem Eng 11:10001–10017. https://doi.org/10.1021/acssuschemeng.3c01320

Article  CAS  PubMed  Google Scholar 

Cozzone AJ (1998) Regulation of acetate metabolism by protein phosphorylation in enteric bacteria. Annu Rev Microbiol 52:127–164. https://doi.org/10.1146/annurev.micro.52.1.127

Article  CAS  PubMed  Google Scholar 

Del Cerro C, Erickson E, Dong T, Wong AR, Eder EK, Purvine SO, Mitchell HD, Weitz KK, Markillie LM, Burnet MC, Hoyt DW, Chu RK, Cheng JF, Ramirez KJ, Katahira R, Xiong W, Himmel ME, Subramanian V, Linger JG, Salvachúa D (2021) Intracellular pathways for lignin catabolism in white-rot fungi. Proc Natl Acad Sci USA 118. https://doi.org/10.1073/pnas.2017381118

Dhawale SS (1993) Is an activator protein-2-like transcription factor involved in regulating gene expression during nitrogen limitation in fungi? Appl Environ Microbiol 59:2335–2338. https://doi.org/10.1128/aem.59.7.2335-2338.1993

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doddapaneni H, Chakraborty R, Yadav JS (2005) Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus Phanerochaete chrysosporium: evidence for gene duplications and extensive gene clustering. BMC Genom 6:92. https://doi.org/10.1186/1471-2164-6-92

Article  CAS  Google Scholar 

Eppink MH, Boeren SA, Vervoort J, van Berkel WJ (1997) Purification and properties of 4-hydroxybenzoate 1-hydroxylase (decarboxylating), a novel flavin adenine dinucleotide-dependent monooxygenase from Candida parapsilosis CBS604. J Bacteriol 179:6680–6687. https://doi.org/10.1128/jb.179.21.6680-6687.1997

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eppink MH, Cammaart E, Van Wassenaar D, Middelhoven WJ, van Berkel WJ (2000) Purification and properties of hydroquinone hydroxylase, a FAD-dependent monooxygenase involved in the catabolism of 4-hydroxybenzoate in Candida parapsilosis CBS604. Eur J Biochem 267:6832–6840. https://doi.org/10.1046/j.1432-1033.2000.01783.x

Article  CAS  PubMed  Google Scholar 

Ferreira P, Carro J, Balcells B, Martínez AT, Serrano A (2023) Expanding the physiological role of aryl-alcohol flavooxidases as quinone reductases. Appl Environ Microbiol 89. https://doi.org/10.1128/aem.01844-22

Glenn JK, Gold MH (1985) Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 242:329–341. https://doi.org/10.1016/0003-9861(85)90217-6

Article  CAS  PubMed  Google Scholar 

Gold MH, Wariishi H, Valli K (1989) Extracellular peroxidases involved in lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium. ACS Symp Ser 389:127–140. https://doi.org/10.1021/bk-1989-0389.ch009

Article  CAS  Google Scholar 

Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11:349–355. https://doi.org/10.1016/j.pbi.2008.02.003

Article  CAS  PubMed  Google Scholar 

Hammel KE, Moen MA (1991) Depolymerization of a synthetic lignin in vitro by lignin peroxidase. Enzyme Microb Technol 13:15–18. https://doi.org/10.1016/0141-0229(91)90182-A

Article  CAS  Google Scholar 

Harwood CS, Parales RE (1996) The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590. https://doi.org/10.1146/annurev.micro.50.1.553

Article  CAS  PubMed  Google Scholar 

Hatakeyama M, Kitaoka T, Ichinose H (2016) Heterologous expression of fungal cytochromes P450 (CYP5136A1 and CYP5136A3) from the white-rot basidiomycete Phanerochaete chrysosporium: functionalization with cytochrome b5 in Escherichia coli. Enzyme Microb Technol 89:7–14. https://doi.org/10.1016/j.enzmictec.2016.03.004

Article  CAS  PubMed  Google Scholar 

Hatta T, Nakano O, Imai N, Takizawa N, Kiyohara H (1999) Cloning and sequence analysis of hydroxyquinol 1,2-dioxygenase gene in 2,4,6-trichlorophenol-degrading Ralstonia pickettii DTP0602 and characterization of its product. J Biosci Bioeng 87:267–272. https://doi.org/10.1016/s1389-1723(99)80030-9

Article  CAS  PubMed  Google Scholar 

Hong CY, Ryu SH, Jeong H, Lee SS, Kim M, Choi IG (2017) Phanerochaete chrysosporium multienzyme catabolic system for in vivo modification of synthetic lignin to succinic acid. ACS Chem Biol 12:1749–1759. https://doi.org/10.1021/acschembio.7b00046

Article  CAS  PubMed  Google Scholar 

Ichinose H (2012) Molecular and functional diversity of fungal cytochrome P450s. Biol Pharm Bull 35:833–837. https://doi.org/10.1248/bpb.35.833

Article  CAS  PubMed  Google Scholar 

Jeoung JH, Bommer M, Lin TY, Dobbek H (2013) Visualizing the substrate-, superoxo-, alkylperoxo-, and product-bound states at the nonheme Fe(II) site of homogentisate dioxygenase. Proc Natl Acad Sci USA 110:12625–12630. https://doi.org/10.1073/pnas.1302144110

Article  PubMed  PubMed Central  Google Scholar 

Kato H, Furusawa TT, Mori R, Suzuki H, Kato M, Shimizu M (2022) Characterization of two 1,2,4-trihydroxybenzene 1,2-dioxygenases from Phanerochaete chrysosporium. Appl Microbiol Biotechnol 106:4499–4509. https://doi.org/10.1007/s00253-022-12007-9

Article  CAS  PubMed  Google Scholar 

Kato H, Takahashi Y, Suzuki H, Ohashi K, Kawashima R, Nakamura K, Sakai K, Hori C, Takasuka TE, Kato M, Shimizu M (2024) Identification and characterization of methoxy- and dimethoxyhydroquinone 1,2-dioxygenase from Phanerochaete chrysosporium. Appl Environ Microbiol 90. https://doi.org/10.1128/aem.01753-23

Katsuki N, Fukushima R, Doi Y, Masuo S, Arakawa T, Yamada C, Fushinobu S, Takaya N (2024) Protocatechuate hydroxylase is a novel group a flavoprotein monooxygenase with a unique substrate recognition mechanism. J Biol Chem 300:105508. https://doi.org/10.1016/j.jbc.2023.105508

Comments (0)

No login
gif