Oral microbiota in preschoolers with rampant caries: a matched case–control study

Aksakal SD, Guven Y, Topcuoglu N, Kulekci G, Aktoren O (2024) Assessment of oral bacteria potentially associated with the mobile microbiome in children with congenital heart disease. J Clin Pediatr Dent 48(2):47–56

PubMed  Google Scholar 

Al-Malik MI, Holt RD, Bedi R (2002) Erosion, caries and rampant caries in preschool children in Jeddah Saudi Arabia. Community Dent Oral Epidemiol 30(1):16–23

Article  PubMed  Google Scholar 

Anowar F, Sadaoui S, Selim B (2021) Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE). Comput Sci Rev 40:100378

Article  Google Scholar 

Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, Romero H, Simón-Soro A, Pignatelli M, Mira A (2012) The oral metagenome in health and disease. ISME J 6(1):46–56

Article  CAS  PubMed  Google Scholar 

Blanchet L, Vitale R, Van Vorstenbosch R, Stavropoulos G, Pender J, Jonkers D, Schooten F-JV, Smolinska A (2020) Constructing bi-plots for random forest: tutorial. Anal Chim Acta 1131:146–155

Article  CAS  PubMed  Google Scholar 

Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon J, Knight R, Mills DA, Caporaso JG (2012) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10(1):57–59

Article  PubMed  PubMed Central  Google Scholar 

Chandra S, Chandra S, Chandra G (2007) Chapter 4. Cinical aspects of dental caries. Jaypee Brothers Medical Publishers (P) Ltd, New Delhi, pp 29–44

Chen Y, Dou G, Wang D, Yang J, Zhang Y, Garnett JA, Chen Y, Wang Y, Xia B (2021) Comparative microbial profiles of caries and black extrinsic tooth stain in primary dentition. Caries Res 55(4):310–321

Article  CAS  PubMed  Google Scholar 

Chumponsuk T, Gruneck L, Gentekaki E, Jitprasertwong P, Kullawong N, Nakayama J, Popluechai S (2021) The salivary microbiota of Thai adults with metabolic disorders and association with diet. Arch Oral Biol 122:105036

Article  CAS  PubMed  Google Scholar 

Drury TF, Horowitz AM, Ismail AI, Maertens MP, Rozier RG, Selwitz RH (1999) Diagnosing and reporting early childhood caries for research purposes. A report of a workshop sponsored by the National Institute of Dental and Craniofacial Research, the Health Resources and Services Administration, and the Health Care Financing Administration. J Public Health Dent 59(3):192–7 (1999 Summer)

Article  CAS  PubMed  Google Scholar 

Erwin AL, Gotschlich EC (1993) Oxidation of D-lactate and L-lactate by Neisseria meningitidis: purification and cloning of meningococcal D-lactate dehydrogenase. J Bacteriol 175(20):6382–6391

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eşian D, Man A, Burlibasa L, Burlibasa M, Perieanu MV, Bică CI (2017) Salivary level of Streptococcus mutans and Lactobacillus spp. related to a high a risk of caries disease. Rom Biotechnol Lett 22(2):12496–503

Google Scholar 

Fabris AS, Nakano V, Avila-Campos MJ (2014) Bacteriological analysis of necrotic pulp and fistulae in primary teeth. J Appl Oral Sci 22(2):118–124

Article  PubMed  PubMed Central  Google Scholar 

Fan X, Monson KR, Peters BA, Whittington JM, Um CY, Oberstein PE, McCullough ML, Freedman ND, Huang WY, Ahn J, Hayes RB (2024) Altered salivary microbiota associated with high-sugar beverage consumption. Sci Rep 14(1):13386. https://doi.org/10.1038/s41598-024-64324-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fechney JM, Browne GV, Prabhu N, Irinyi L, Meyer W, Hughes T, Bockmann M, Townsend G, Salehi H, Adler CJ (2018) Preliminary study of the oral mycobiome of children with and without dental caries. J Oral Microbiol 11(1):1536182

Article  PubMed  PubMed Central  Google Scholar 

Gong B, Cao H, Peng C, Perčulija V, Tong G, Fang H, Wei X (2019) Ouyang S (2019) High-throughput sequencing and analysis of microbial communities in the mangrove swamps along the coast of Beibu Gulf in Guangxi, China. Sci Rep 9(1):9377

Article  PubMed  PubMed Central  Google Scholar 

Gross EL, Leys EJ, Gasparovich SR, Firestone ND, Schwartzbaum JA, Janies DA, Asnani K, Griffen AL (2010) Bacterial 16S sequence analysis of severe caries in young permanent teeth. J Clin Microbiol 48(11):4121–4128

Article  PubMed  PubMed Central  Google Scholar 

Guzmán-Armstrong S (2005) Rampant caries. J Sch Nurs 21(5):272–278

Article  PubMed  Google Scholar 

Hajishengallis G, Darveau RP, Curtis MA (2012) The keystone pathogen hypothesis. Nat Rev Microbiol 10(10):717–725

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hurley E, Barrett MPJ, Kinirons M, Whelton H, Ryan CA, Stanton C, Harris HMB, O’Toole PW (2019) Comparison of the salivary and dentinal microbiome of children with severe-early childhood caries to the salivary microbiome of caries-free children. BMC Oral Health 19(1):13

Article  PubMed  PubMed Central  Google Scholar 

Ito IY, Junior FM, Paula-Silva FWG, Da Silva LAB, Leonardo MR, Nelson-Filho P (2011) Microbial culture and checkerboard DNA-DNA hybridization assessment of bacteria in root canals of primary teeth pre- and post-endodontic therapy with a calcium hydroxide/chlorhexidine paste: assessment of bacteria pre- and post-endodontic therapy. Int J Paediatr Dent 21(5):353–360

Article  PubMed  Google Scholar 

Jayaraj D, Ganesan S (2015) Salivary pH and buffering capacity as risk markers for early childhood caries: a clinical study. Int J Clin Pediatr Dent 8(3):167–171

Article  CAS  PubMed  PubMed Central  Google Scholar 

Köhler B, Bjarnason S (1992) Mutans streptococci, lactobacilli and caries prevalence in 15 to 16-year olds in Göteborg. Part II Swed Dent J 16(6):253–259

PubMed  Google Scholar 

Kuriakose S, Sundaresan C, Mathai V, Khosla E, Gaffoor FMA (2013) A comparative study of salivary buffering capacity, flow rate, resting pH, and salivary Immunoglobulin A in children with rampant caries and caries-resistant children. J Indian Soc Pedod Prev Dent 31(2):69–73

Article  CAS  PubMed  Google Scholar 

Lee H-S, Lee J, Kim S-O, Song J, Kim B, Kim Y, Lee J-H (2016) Comparison of the oral microbiome of siblings using next-generation sequencing: a pilot study. Oral Dis 22(6):549–556

Article  PubMed  Google Scholar 

Lei S, Zhang Z, Xie G, Zhao C, Miao Y, Chen D, Zhang G, Liu H, Peng C, Hou Y, Gong J (2022) Theabrownin modulates the gut microbiome and serum metabolome in aging mice induced by D-galactose. J Funct Foods 89:104941

Article  CAS  Google Scholar 

Lemos J, Palmer S, Zeng L, Wen Z, Kajfasz J, Freires I, Abranches J, Brady L (2019) The biology of Streptococcus mutans. Microbiol Spectr 7(1):10

Article  PubMed Central  Google Scholar 

Lemos SS, Cesar DE, ProcÓpio SW, Machado FC, Ribeiro LC, Ribeiro RA (2020) Qualitative and quantitative molecular analysis of bacteria in root canals of primary teeth with pulp necrosis. Braz Oral Res 34:e093. https://doi.org/10.1590/1807-3107bor-2020.vol34.0093

Article  PubMed  Google Scholar 

Lestari AD, Putri MH, Restuning S, Laut DM (2022) Relationship between frequency, duration and time of bottle feeding with rampant caries. JDHT 3(2):79–85

Article  Google Scholar 

Li G, Shi M, Zhao S, Li D, Long Y, Yang C, Zhu Y (2020) RNA-Seq comparative analysis reveals the response of Enterococcus faecalis TV4 under fluoride exposure. Gene 726:144197

Article  CAS  PubMed  Google Scholar 

Li X, Liu Y, Yang X, Li C, Song Z (2022) The oral microbiota: community composition, influencing factors, pathogenesis, and interventions. Front Microbiol 13:89553

Google Scholar 

Li K, Wang J, Du N, Sun Y, Sun Q, Yin W, Li H, Meng L, Liu X (2023) Salivary microbiome and metabolome analysis of severe early childhood caries. BMC Oral Health 23(1):30

Article  PubMed  PubMed Central  Google Scholar 

Liu Y, Liu Z, Feng X, Pan Y, Ma S (2001) The initial adherence of Streptococci isolates from the children with rampant caries. J Pract Stomatol 18(2):102–104

Google Scholar 

Liu S, Chen M, Wang Y, Zhou X, Peng X, Ren B, Li M, Cheng L (2020) Effect of Veillonella parvula on the physiological activity of Streptococcus mutans. Arch Oral Biol 109:104578

Article  CAS 

Comments (0)

No login
gif