Quantitative fluorescent detection of tetracycline in animal-derived foods using quantum dots

Bentley GA, Boulot G, Chitarra V (1994) Cross-reactivity in antibody-antigen interactions. Res Immunol 145:45–48. https://doi.org/10.1016/s0923-2494(94)80042-1

Article  CAS  PubMed  Google Scholar 

Bobrovnik SA (2003) Determination of antibody affinity by ELISA. Theory J Biochem Bioph Meth 57:213–236. https://doi.org/10.1016/S0165-022x(03)00145-3

Article  CAS  Google Scholar 

Bustos ARM, Garcia-Cortes M, González-Iglesias H, Encinar JR, Costa-Fernández JM, Coca-Prados M, Sanz-Medel A (2015) Sensitive targeted multiple protein quantification based on elemental detection of Quantum Dots. Anal Chim Acta 879:77–84. https://doi.org/10.1016/j.aca.2015.03.015

Article  CAS  Google Scholar 

Chen LC, Lei S, Wang MZ, Yang J, Ge XW (2016) Fabrication of macroporous polystyrene/graphene oxide composite monolith and its adsorption property for tetracycline. Chin Chem Lett 27:511–517. https://doi.org/10.1016/j.cclet.2016.01.057

Article  CAS  Google Scholar 

Chen ZJ, Liu XX, Xiao ZL, Fu HJ, Huang YP, Huang SY, Shen YD, He F, Yang XX, Hammock B, Xu ZL (2020) Production of a specific monoclonal antibody for 1-naphthol based on novel hapten strategy and development of an easy-to-use ELISA in urine samples. Ecotoxicol Environ Saf 196:110533. https://doi.org/10.1016/j.ecoenv.2020.110533

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cooper HM, Paterson Y (2001) Determination of the specific antibody titer. Curr Protoc Mol Biol Chapter 11(Unit11):17. https://doi.org/10.1002/0471142727.mb1117s50

Article  Google Scholar 

Deng JH, Li XD, Zheng DD, Wang YW, Chen LY, Song HH, Wang TY, Huang YX, Pang WQ, Tian KG (2018) Establishment and application of an indirect ELISA for porcine circovirus 3. Arch Virol 163:479–482. https://doi.org/10.1007/s00705-017-3607-7

Article  CAS  PubMed  Google Scholar 

Desmarchelier A, Anizan S, Tien MM, Savoy MC, Bion C (2018) Determination of five tetracyclines and their epimers by LC-MS/MS based on a liquid-liquid extraction with low temperature partitioning. Food Addit Contam A 35:686–694. https://doi.org/10.1080/19440049.2018.1427894

Article  CAS  Google Scholar 

Eftekhari A, Dalili M, Karimi Z, Rouhani S, Hasanzadeh A, Rostamnia S, Khaksar S, Idris AO, Karimi-Maleh H, Yola ML, Msagati TAM (2021) Sensitive and selective electrochemical detection of bisphenol A based on SBA-15 like Cu-PMO modified glassy carbon electrode. Food Chem 358:129763. https://doi.org/10.1016/j.foodchem.2021.129763

Article  CAS  PubMed  Google Scholar 

Gab-Allah MA, Lijalem YG, Yu H, Lim DK, Ahn S, Choi K, Kim B (2023) Accurate determination of four tetracycline residues in chicken meat by isotope dilution-liquid chromatography/tandem mass spectrometry. J Chromatogr A 1691:463818. https://doi.org/10.1016/j.chroma.2023.463818

Article  CAS  PubMed  Google Scholar 

García-Fernández J, Trapiella-Alfonso L, Costa-Fernández JM, Pereiro R, Sanz-Medel A (2014) A Quantum Dot-Based Immunoassay for Screening of Tetracyclines in Bovine Muscle. J Agr Food Chem 62:1733–1740. https://doi.org/10.1021/jf500118x

Article  CAS  Google Scholar 

Gary H, Fiona F (2016) United Nations meeting on antimicrobial resistance. Bull World Health Organ 94:638–639. https://doi.org/10.2471/BLT.16.020916

Article  Google Scholar 

Guan LY, Li YQ, Lin S, Zhang MZ, Chen J, Ma ZY, Zhao YD (2012) Characterization of CdTe/CdSe quantum dots-transferrin fluorescent probes for cellular labeling. Anal Chim Acta 741:86–92. https://doi.org/10.1016/j.aca.2012.06.043

Article  CAS  PubMed  Google Scholar 

Guo Z, Gai P (2011) Development of an ultrasensitive electrochemiluminescence inhibition method for the determination of tetracyclines. Anal Chim Acta 688:197–202. https://doi.org/10.1016/j.aca.2010.12.043

Article  CAS  PubMed  Google Scholar 

Guo ZY, Gai PP, Duan J, Zhang HN, Wang S (2010) Tetracycline selective electrode based on molecularly imprinted polymer particles. Chin Chem Lett 21:1235–1238. https://doi.org/10.1016/j.cclet.2010.04.007

Article  CAS  Google Scholar 

GvozdenRosic DS, Omarova Sabina (2024) CANCER signaling, cell/gene therapy, diagnosis and role of nanobiomaterials. Adv Biol Earth Sci 9:11–34. https://doi.org/10.62476/abes9s11

Article  Google Scholar 

Han SQ, Liu EB, Li H (2006) Determination of tetracycline, chlortetracycline and oxytetracycline by flow injection with inhibitory chemiluminescence detection using copper(II) as a probe ion. Luminescence 21:106–111. https://doi.org/10.1002/bio.893

Article  CAS  PubMed  Google Scholar 

Hardman R (2006) A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ Health Persp 114:165–172. https://doi.org/10.1289/ehp.8284

Article  Google Scholar 

Huang JX, Yao CY, Yang JY, Li ZF, He F, Tian YX, Wang H, Xu ZL, Shen YD (2019) Design of novel haptens and development of monoclonal antibody-based immunoassays for the simultaneous detection of tylosin and tilmicosin in milk and water samples. Biomolecules 9. https://doi.org/10.3390/biom9120770

Jansen KU, Knirsch C, Anderson AS (2018) The role of vaccines in preventing bacterial antimicrobial resistance. Nat Med 24:10–19. https://doi.org/10.1038/nm.4465

Article  CAS  PubMed  Google Scholar 

Karageorgou E, Armeni M, Moschou I, Samanidou V (2014) Ultrasound-assisted dispersive extraction for the high pressure liquid chromatographic determination of tetracyclines residues in milk with diode array detection. Food Chem 150:328–334. https://doi.org/10.1016/j.foodchem.2013.11.008

Article  CAS  PubMed  Google Scholar 

Kowalski P (2008) Capillary electrophoretic method for the simultaneous determination of tetracycline residues in fish samples. J Pharmaceut Biomed 47:487–493. https://doi.org/10.1016/j.jpba.2008.01.036

Article  CAS  Google Scholar 

Lee KS, Prasad PN, Huyet G, Tan CH (2012) Feature issue introduction: quantum dots for photonic applications. Opt Express 20:10721–10723. https://doi.org/10.1364/OE.20.010721

Article  CAS  PubMed  Google Scholar 

Li C, Zhang Y, Eremin SA, Yakup O, Yao G, Zhang X (2017) Detection of kanamycin and gentamicin residues in animal-derived food using IgY antibody based ic-ELISA and FPIA. Food Chem 227:48–54. https://doi.org/10.1016/j.foodchem.2017.01.058

Article  CAS  PubMed  Google Scholar 

Liu D, Chen D, Zhang T, Yu N, Ren R, Chen Y, Wang C (2021) Preparation and application of yellow fever virus NS1 protein-specific monoclonal antibodies. J Med Virol 93:3374–3382. https://doi.org/10.1002/jmv.26455

Article  CAS  PubMed  Google Scholar 

Liu X, Cai M, Wang X, Li X (1999) One simple and efficient method for purification of IgG McAb from mice ascites: caprylic acid/ammonium sulfate precipitation. Hua Xi Yi Ke Da Xue Xue Bao 30(455–456):464

PubMed  Google Scholar 

Ma J, Wu S, Wang Y, Li N, Zhou G, Xu X, Cheng K, Jin B, Zhang Y, Zhuang R (2021) Preparation and identification of mouse-derived monoclonal antibodies to human ST2 molecule. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 37:1026–1031

PubMed  Google Scholar 

Martinez JL (2009) Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 157:2893–2902. https://doi.org/10.1016/j.envpol.2009.05.051

Article  CAS  PubMed  Google Scholar 

Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446. https://doi.org/10.1038/nmat1390

Article  CAS  PubMed  Google Scholar 

Moats WA (2000) Determination of tetracycline antibiotics in beef and pork tissues using ion-paired liquid chromatography. J Agric Food Chem 48:2244–2248. https://doi.org/10.1021/jf990649r

Article  CAS  PubMed  Google Scholar 

Muriuki FK, Ogara WO, Njeruh FM, Mitema ES (2001) Tetracycline residue levels in cattle meat from Nairobi salughter house in Kenya. J Vet Sci 2:97–101

Article  CAS  PubMed  Google Scholar 

Oka H, Ito Y, Matsumoto H (2000) Chromatographic analysis of tetracycline antibiotics in foods. J Chromatogr A 882:109–133. https://doi.org/10.1016/S0021-9673(99)01316-3

Comments (0)

No login
gif