Al Amin M, Ali MR, Islam MR, Alam A, Shill DK, Rahman MS, Siddique MA, Sultana M, Hossain MA (2020) Development and serology based efficacy assessment of a trivalent foot-and-mouth disease vaccine. Vaccine 38(32):4970–4978. https://doi.org/10.1016/j.vaccine.2020.05.079
Article PubMed CAS Google Scholar
Bablanian GM, Grubman MJ (1993) Characterization of the foot-and-mouth disease virus 3C protease expressed in Escherichia coli. Virology 197(1):320–327. https://doi.org/10.1006/viro.1993.1593
Article PubMed CAS Google Scholar
Belsham GJ (2005) Translation and replication of FMDV RNA. Curr Top Microbiol Immunol 288:43–70. https://doi.org/10.1007/3-540-27109-0_3
Article PubMed CAS Google Scholar
Belsham GJ, McInerney GM, Ross-Smith N (2000) Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells. J Virol 74(1):272–280. https://doi.org/10.1128/jvi.74.1.272-280.2000
Article PubMed PubMed Central CAS Google Scholar
Bergmann EM, Mosimann SC, Chernaia MM, Malcolm BA, James MN (1997) The refined crystal structure of the 3C gene product from hepatitis A virus: specific proteinase activity and RNA recognition. J Virol 71(3):2436–2448. https://doi.org/10.1128/jvi.71.3.2436-2448.1997
Article PubMed PubMed Central CAS Google Scholar
Birtley JR, Knox SR, Jaulent AM, Brick P, Leatherbarrow RJ, Curry S (2005) Crystal structure of foot-and-mouth disease virus 3C protease. New insights into catalytic mechanism and cleavage specificity. J Biol Chem 280(12):11520–11527. https://doi.org/10.1074/jbc.M413254200
Article PubMed CAS Google Scholar
Curry S, Roqué-Rosell N, Sweeney TR, Zunszain PA, Leatherbarrow RJ (2007a) Structural analysis of foot-and-mouth disease virus 3C protease: a viable target for antiviral drugs? Biochem Soc Trans 35(Pt 3):594–598. https://doi.org/10.1042/bst0350594
Article PubMed CAS Google Scholar
Curry S, Roqué-Rosell N, Zunszain PA, Leatherbarrow RJ (2007b) Foot-and-mouth disease virus 3C protease: recent structural and functional insights into an antiviral target. Int J Biochem Cell Biol 39(1):1–6. https://doi.org/10.1016/j.biocel.2006.07.006
Article PubMed CAS Google Scholar
Diaz-San Segundo F, Montiel NA, Sturza DF, Perez-Martin E, Hickman D, Ramirez-Medina E, Grubman MJ, de Los ST (2016) Combination of Adt-O1Manisa and Ad5-boIFNλ3 induces early protective immunity against foot-and-mouth disease in cattle. Virology 499:340–349. https://doi.org/10.1016/j.virol.2016.09.027
Article PubMed CAS Google Scholar
Dong H, Lu Y, Zhang Y, Mu S, Wang N, Du P, Zhi X, Wen X, Wang X, Sun S, Zhang Y, Guo H (2021) A heat-induced mutation on VP1 of foot-and-mouth disease virus serotype O enhanced capsid stability and immunogenicity. J Virol 95(16):e0017721. https://doi.org/10.1128/jvi.00177-21
Article PubMed CAS Google Scholar
Du Y, Bi J, Liu J, Liu X, Wu X, Jiang P, Yoo D, Zhang Y, Wu J, Wan R, Zhao X, Guo L, Sun W, Cong X, Chen L, Wang J (2014) 3Cpro of foot-and-mouth disease virus antagonizes the interferon signaling pathway by blocking STAT1/STAT2 nuclear translocation. J Virol 88(9):4908–4920. https://doi.org/10.1128/jvi.03668-13
Article PubMed PubMed Central Google Scholar
Fan X, Han S, Yan D, Gao Y, Wei Y, Liu X, Liao Y, Guo H, Sun S (2017) Foot-and-mouth disease virus infection suppresses autophagy and NF-кB antiviral responses via degradation of ATG5-ATG12 by 3C(pro). Cell Death Dis 8(1):e2561. https://doi.org/10.1038/cddis.2016.489
Article PubMed PubMed Central CAS Google Scholar
Flexner C, Moss B, London WT, Murphy BR (1990) Attenuation and immunogenicity in primates of vaccinia virus recombinants expressing human interleukin-2. Vaccine 8(1):17–21. https://doi.org/10.1016/0264-410x(90)90171-h
Article PubMed CAS Google Scholar
Henikoff S (2008) Nucleosome destabilization in the epigenetic regulation of gene expression. Nat Rev Genet 9(1):15–26. https://doi.org/10.1038/nrg2206
Article PubMed CAS Google Scholar
Huong Luong GT, Yoon B-S (2015) Over-expression and purification of recombinant 3C-like protease from black queen cell virus in Escherichia coli. J Apiculture 30(1):45–52. https://doi.org/10.17519/apiculture.2015.04.30.1.45
Kristensen T, Newman J, Guan SH, Tuthill TJ, Belsham GJ (2018) Cleavages at the three junctions within the foot-and-mouth disease virus capsid precursor (P1–2A) by the 3C protease are mutually independent. Virology 522:260–270. https://doi.org/10.1016/j.virol.2018.07.010
Article PubMed CAS Google Scholar
Kuo CJ, Shie JJ, Fang JM, Yen GR, Hsu JT, Liu HG, Tseng SN, Chang SC, Lee CY, Shih SR, Liang PH (2008) Design, synthesis, and evaluation of 3C protease inhibitors as anti-enterovirus 71 agents. Bioorg Med Chem 16(15):7388–7398. https://doi.org/10.1016/j.bmc.2008.06.015
Article PubMed PubMed Central CAS Google Scholar
Lazarus DD, Peta F, Blight D, Van Heerden J, Mutowembwa PB, Heath L, Blignaut B, Opperman PA, Fosgate GT (2020) Efficacy of a foot-and-mouth disease vaccine against a heterologous SAT1 virus challenge in goats. Vaccine 38(24):4006–4015. https://doi.org/10.1016/j.vaccine.2020.04.014
Article PubMed CAS Google Scholar
Lea S, Hernández J, Blakemore W, Brocchi E, Curry S, Domingo E, Fry E, Abu-Ghazaleh R, King A, Newman J, Stuart D, Mateu MG (1994) The structure and antigenicity of a type C foot-and-mouth disease virus. Structure 2(2):123–139. https://doi.org/10.1016/s0969-2126(00)00014-9
Article PubMed CAS Google Scholar
Lei X, Xiao X, Xue Q, Jin Q, He B, Wang J (2013) Cleavage of interferon regulatory factor 7 by enterovirus 71 3C suppresses cellular responses. J Virol 87(3):1690–1698. https://doi.org/10.1128/jvi.01855-12
Article PubMed PubMed Central CAS Google Scholar
Lin YJ, Liu WT, Stark H, Huang CT (2015) Expression of enterovirus 71 virus-like particles in transgenic enoki (Flammulina velutipes). Appl Microbiol Biotechnol 99(16):6765–6774. https://doi.org/10.1007/s00253-015-6588-z
Article PubMed CAS Google Scholar
Lloyd RE (2006) Translational control by viral proteinases. Virus Res 119(1):76–88. https://doi.org/10.1016/j.virusres.2005.10.016
Article PubMed CAS Google Scholar
Martel E, Forzono E, Kurker R, Clark BA, Neilan JG, Puckette M (2019) Effect of foot-and-mouth disease virus 3C protease B2 β-strand proline mutagenesis on expression and processing of the P1 polypeptide using a plasmid expression vector. J Gen Virol 100(3):446–456. https://doi.org/10.1099/jgv.0.001204
Article PubMed CAS Google Scholar
Mason PW, Grubman MJ, Baxt B (2003) Molecular basis of pathogenesis of FMDV. Virus Res 91(1):9–32. https://doi.org/10.1016/s0168-1702(02)00257-5
Article PubMed CAS Google Scholar
Mignaqui AC, Ruiz V, Perret S, St-Laurent G, Singh Chahal P, Transfiguracion J, Sammarruco A, Gnazzo V, Durocher Y, Wigdorovitz A (2013) Transient gene expression in serum-free suspension-growing mammalian cells for the production of foot-and-mouth disease virus empty capsids. PLoS ONE 8(8):e72800. https://doi.org/10.1371/journal.pone.0072800
Article PubMed PubMed Central CAS Google Scholar
Mingxiao M, Ningyi J, Juan LH, Min Z, Guoshun S, Guangze Z, Huijun L, Xiaowei H, Minglan J, Xu L, Haili M, Yue J, Gefen Y, Kuoshi J (2007) Immunogenicity of plasmids encoding P12A and 3C of FMDV and swine IL-18. Antiviral Res 76(1):59–67. https://doi.org/10.1016/j.antiviral.2007.05.003
Article PubMed CAS Google Scholar
Nominé Y, Ristriani T, Laurent C, Lefèvre JF, Weiss E, Travé G (2001) Formation of soluble inclusion bodies by hpv e6 oncoprotein fused to maltose-binding protein. Pr
Comments (0)