Glycobiology in osteoclast differentiation and function

Bieberich, E. Synthesis, processing, and function of N-glycans in N-glycoproteins. Adv. Neurobiol. 29, 65–93 (2023).

Article  PubMed  Google Scholar 

Schjoldager, K. T., Narimatsu, Y., Joshi, H. J. & Clausen, H. Global view of human protein glycosylation pathways and functions. Nat. Rev. Mol. Cell Biol. 21, 729–749 (2020).

Article  CAS  PubMed  Google Scholar 

Harada, Y., Hirayama, H. & Suzuki, T. Generation and degradation of free asparagine-linked glycans. Cell Mol. Life Sci. 72, 2509–2533 (2015).

Article  CAS  PubMed  Google Scholar 

Hardt, B., Aparicio, R. & Bause, E. The oligosaccharyltransferase complex from pig liver: cDNA cloning, expression and functional characterization. Glycoconj. J. 17, 767–779 (2000).

Article  CAS  PubMed  Google Scholar 

Stigliano, I. D., Caramelo, J. J., Labriola, C. A., Parodi, A. J. & D’Alessio, C. Glucosidase II beta subunit modulates N-glycan trimming in fission yeasts and mammals. Mol. Biol. Cell 20, 3974–3984 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parodi, A. J. N-glycosylation in trypanosomatid protozoa. Glycobiology 3, 193–199 (1993).

Article  CAS  PubMed  Google Scholar 

Bennett, E. P. et al. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 22, 736–756 (2012).

Article  CAS  PubMed  Google Scholar 

Ju, T. et al. Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Res. 68, 1636–1646 (2008).

Article  CAS  PubMed  Google Scholar 

Iwai, T. et al. Molecular cloning and characterization of a novel UDP-GlcNAc:GalNAc-peptide beta1,3-N-acetylglucosaminyltransferase (beta 3Gn-T6), an enzyme synthesizing the core 3 structure of O-glycans. J. Biol. Chem. 277, 12802–12809 (2002).

Article  CAS  PubMed  Google Scholar 

Yeh, J. C., Ong, E. & Fukuda, M. Molecular cloning and expression of a novel beta-1,6-N-acetylglucosaminyltransferase that forms core 2, core 4, and I branches. J. Biol. Chem. 274, 3215–3221 (1999).

Article  CAS  PubMed  Google Scholar 

Wang, Y. et al. Modification of epidermal growth factor-like repeats with O-fucose. Molecular cloning and expression of a novel GDP-fucose protein O-fucosyltransferase. J. Biol. Chem. 276, 40338–40345 (2001).

Article  CAS  PubMed  Google Scholar 

Wang, Y., Lee, G. F., Kelley, R. F. & Spellman, M. W. Identification of a GDP-L-fucose:polypeptide fucosyltransferase and enzymatic addition of O-linked fucose to EGF domains. Glycobiology 6, 837–842 (1996).

Article  CAS  PubMed  Google Scholar 

Okajima, T., Matsuura, A. & Matsuda, T. Biological functions of glycosyltransferase genes involved in O-fucose glycan synthesis. J. Biochem. 144, 1–6 (2008).

Article  CAS  PubMed  Google Scholar 

Takeuchi, H. et al. Two novel protein O-glucosyltransferases that modify sites distinct from POGLUT1 and affect Notch trafficking and signaling. Proc. Natl. Acad. Sci. USA 115, E8395–e8402 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Williamson, D. B. & Haltiwanger, R. S. Identification, function, and biological relevance of POGLUT2 and POGLUT3. Biochem. Soc. Trans. 50, 1003–1012 (2022).

Article  CAS  PubMed  Google Scholar 

Sakaidani, Y. et al. O-linked-N-acetylglucosamine modification of mammalian Notch receptors by an atypical O-GlcNAc transferase Eogt1. Biochem. Biophys. Res. Commun. 419, 14–19 (2012).

Article  CAS  PubMed  Google Scholar 

Schegg, B., Hülsmeier, A. J., Rutschmann, C., Maag, C. & Hennet, T. Core glycosylation of collagen is initiated by two beta(1-O)galactosyltransferases. Mol. Cell Biol. 29, 943–952 (2009).

Article  CAS  PubMed  Google Scholar 

Sethi, M. K. et al. Molecular cloning of a xylosyltransferase that transfers the second xylose to O-glucosylated epidermal growth factor repeats of notch. J. Biol. Chem. 287, 2739–2748 (2012).

Article  CAS  PubMed  Google Scholar 

Sethi, M. K. et al. Identification of glycosyltransferase 8 family members as xylosyltransferases acting on O-glucosylated notch epidermal growth factor repeats. J. Biol. Chem. 285, 1582–1586 (2010).

Article  CAS  PubMed  Google Scholar 

Roch, C., Kuhn, J., Kleesiek, K. & Götting, C. Differences in gene expression of human xylosyltransferases and determination of acceptor specificities for various proteoglycans. Biochem. Biophys. Res. Commun. 391, 685–691 (2010).

Article  CAS  PubMed  Google Scholar 

Scietti, L. et al. Molecular architecture of the multifunctional collagen lysyl hydroxylase and glycosyltransferase LH3. Nat. Commun. 9, 3163 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Fischöder, T., Laaf, D., Dey, C. & Elling, L. Enzymatic synthesis of N-acetyllactosamine (LacNAc) type 1 oligomers and characterization as multivalent galectin ligands. Molecules 22, 1320 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Hirano, K. & Furukawa, K. Biosynthesis and biological significances of LacdiNAc group on N- and O-glycans in human cancer cells. Biomolecules 12, 195 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng, W. et al. Helicobacter pylori β1,3-N-acetylglucosaminyltransferase for versatile synthesis of type 1 and type 2 poly-LacNAcs on N-linked, O-linked and I-antigen glycans. Glycobiology 22, 1453–1464 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holgersson, J. & Löfling, J. Glycosyltransferases involved in type 1 chain and Lewis antigen biosynthesis exhibit glycan and core chain specificity. Glycobiology 16, 584–593 (2006).

Article  CAS  PubMed  Google Scholar 

Miyoshi, E., Moriwaki, K. & Nakagawa, T. Biological function of fucosylation in cancer biology. J. Biochem. 143, 725–729 (2008).

Article  CAS  PubMed  Google Scholar 

Cummings, R. D. The repertoire of glycan determinants in the human glycome. Mol. Biosyst. 5, 1087–1104 (2009).

Article  CAS  PubMed  Google Scholar 

Tsuji, S., Datta, A. K. & Paulson, J. C. Systematic nomenclature for sialyltransferases. Glycobiology 6, v–vii (1996).

CAS  PubMed  Google Scholar 

Oriol, R., Mollicone, R., Cailleau, A., Balanzino, L. & Breton, C. Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria. Glycobiology 9, 323–334 (1999).

Article  CAS  PubMed  Google Scholar 

Varki, A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 446, 1023–1029 (2007).

Article  CAS  PubMed  Google Scholar 

Illés, T., Fischer, J. & Szabó, G. Lectin histochemistry of pathological bones. Bull. Hosp Jt. Dis. 58, 206–211 (1999).

PubMed  Google Scholar 

Takahata, M. et al. Sialylation of cell surface glycoconjugates is essential for osteoclastogenesis. Bone 41, 77–86 (2007).

Article  CAS  PubMed  Google Scholar 

Takeuchi, T. et al. Glucosamine suppresses osteoclast differentiation through the modulation of glycosylation including O-GlcNAcylation. Biol. Pharm. Bull. 40, 352–356 (2017).

Article  CAS  PubMed  Google Scholar 

Boyle, W., Simonet, W. & Lacey, D. Osteoclast differentiation and activation. Nature 423, 337–342 (2003).

Article  CAS  PubMed  Google Scholar 

Dou, C. et al. Sialylation of TLR2 initiates osteoclast fusion. Bone Res. 10, 24 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, W. et al. RANK(+)TLR2(+) myeloid subpopulation converts autoimmune to joint destruction in rheumatoid arthritis. Elife 12, e85553 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Kaighn, M. E., Narayan, K. S., Ohnuki, Y., Lechner, J. F. & Jones, L. W. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Investig. Urol. 17, 16–23 (1979).

CAS  Google Scholar 

Inder, K. et al. Cavin-1/PTRF alters prostate cancer cell-derived extracellular vesicle content and internalization to attenuate extracellular vesicle-mediated osteoclastogenesis and osteoblast proliferation. J. Extracell. Vesicles. https://doi.org/10.3402/jev.v3.23784 (2014).

Kaifu, T. et al. DCIR and its ligand asialo-biantennary N-glycan regulate DC function and osteoclastogenesis. J. Exp. Med. 218, e2

Comments (0)

No login
gif