Bieberich, E. Synthesis, processing, and function of N-glycans in N-glycoproteins. Adv. Neurobiol. 29, 65–93 (2023).
Schjoldager, K. T., Narimatsu, Y., Joshi, H. J. & Clausen, H. Global view of human protein glycosylation pathways and functions. Nat. Rev. Mol. Cell Biol. 21, 729–749 (2020).
Article CAS PubMed Google Scholar
Harada, Y., Hirayama, H. & Suzuki, T. Generation and degradation of free asparagine-linked glycans. Cell Mol. Life Sci. 72, 2509–2533 (2015).
Article CAS PubMed Google Scholar
Hardt, B., Aparicio, R. & Bause, E. The oligosaccharyltransferase complex from pig liver: cDNA cloning, expression and functional characterization. Glycoconj. J. 17, 767–779 (2000).
Article CAS PubMed Google Scholar
Stigliano, I. D., Caramelo, J. J., Labriola, C. A., Parodi, A. J. & D’Alessio, C. Glucosidase II beta subunit modulates N-glycan trimming in fission yeasts and mammals. Mol. Biol. Cell 20, 3974–3984 (2009).
Article CAS PubMed PubMed Central Google Scholar
Parodi, A. J. N-glycosylation in trypanosomatid protozoa. Glycobiology 3, 193–199 (1993).
Article CAS PubMed Google Scholar
Bennett, E. P. et al. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 22, 736–756 (2012).
Article CAS PubMed Google Scholar
Ju, T. et al. Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Res. 68, 1636–1646 (2008).
Article CAS PubMed Google Scholar
Iwai, T. et al. Molecular cloning and characterization of a novel UDP-GlcNAc:GalNAc-peptide beta1,3-N-acetylglucosaminyltransferase (beta 3Gn-T6), an enzyme synthesizing the core 3 structure of O-glycans. J. Biol. Chem. 277, 12802–12809 (2002).
Article CAS PubMed Google Scholar
Yeh, J. C., Ong, E. & Fukuda, M. Molecular cloning and expression of a novel beta-1,6-N-acetylglucosaminyltransferase that forms core 2, core 4, and I branches. J. Biol. Chem. 274, 3215–3221 (1999).
Article CAS PubMed Google Scholar
Wang, Y. et al. Modification of epidermal growth factor-like repeats with O-fucose. Molecular cloning and expression of a novel GDP-fucose protein O-fucosyltransferase. J. Biol. Chem. 276, 40338–40345 (2001).
Article CAS PubMed Google Scholar
Wang, Y., Lee, G. F., Kelley, R. F. & Spellman, M. W. Identification of a GDP-L-fucose:polypeptide fucosyltransferase and enzymatic addition of O-linked fucose to EGF domains. Glycobiology 6, 837–842 (1996).
Article CAS PubMed Google Scholar
Okajima, T., Matsuura, A. & Matsuda, T. Biological functions of glycosyltransferase genes involved in O-fucose glycan synthesis. J. Biochem. 144, 1–6 (2008).
Article CAS PubMed Google Scholar
Takeuchi, H. et al. Two novel protein O-glucosyltransferases that modify sites distinct from POGLUT1 and affect Notch trafficking and signaling. Proc. Natl. Acad. Sci. USA 115, E8395–e8402 (2018).
Article CAS PubMed PubMed Central Google Scholar
Williamson, D. B. & Haltiwanger, R. S. Identification, function, and biological relevance of POGLUT2 and POGLUT3. Biochem. Soc. Trans. 50, 1003–1012 (2022).
Article CAS PubMed Google Scholar
Sakaidani, Y. et al. O-linked-N-acetylglucosamine modification of mammalian Notch receptors by an atypical O-GlcNAc transferase Eogt1. Biochem. Biophys. Res. Commun. 419, 14–19 (2012).
Article CAS PubMed Google Scholar
Schegg, B., Hülsmeier, A. J., Rutschmann, C., Maag, C. & Hennet, T. Core glycosylation of collagen is initiated by two beta(1-O)galactosyltransferases. Mol. Cell Biol. 29, 943–952 (2009).
Article CAS PubMed Google Scholar
Sethi, M. K. et al. Molecular cloning of a xylosyltransferase that transfers the second xylose to O-glucosylated epidermal growth factor repeats of notch. J. Biol. Chem. 287, 2739–2748 (2012).
Article CAS PubMed Google Scholar
Sethi, M. K. et al. Identification of glycosyltransferase 8 family members as xylosyltransferases acting on O-glucosylated notch epidermal growth factor repeats. J. Biol. Chem. 285, 1582–1586 (2010).
Article CAS PubMed Google Scholar
Roch, C., Kuhn, J., Kleesiek, K. & Götting, C. Differences in gene expression of human xylosyltransferases and determination of acceptor specificities for various proteoglycans. Biochem. Biophys. Res. Commun. 391, 685–691 (2010).
Article CAS PubMed Google Scholar
Scietti, L. et al. Molecular architecture of the multifunctional collagen lysyl hydroxylase and glycosyltransferase LH3. Nat. Commun. 9, 3163 (2018).
Article PubMed PubMed Central Google Scholar
Fischöder, T., Laaf, D., Dey, C. & Elling, L. Enzymatic synthesis of N-acetyllactosamine (LacNAc) type 1 oligomers and characterization as multivalent galectin ligands. Molecules 22, 1320 (2017).
Article PubMed PubMed Central Google Scholar
Hirano, K. & Furukawa, K. Biosynthesis and biological significances of LacdiNAc group on N- and O-glycans in human cancer cells. Biomolecules 12, 195 (2022).
Article CAS PubMed PubMed Central Google Scholar
Peng, W. et al. Helicobacter pylori β1,3-N-acetylglucosaminyltransferase for versatile synthesis of type 1 and type 2 poly-LacNAcs on N-linked, O-linked and I-antigen glycans. Glycobiology 22, 1453–1464 (2012).
Article CAS PubMed PubMed Central Google Scholar
Holgersson, J. & Löfling, J. Glycosyltransferases involved in type 1 chain and Lewis antigen biosynthesis exhibit glycan and core chain specificity. Glycobiology 16, 584–593 (2006).
Article CAS PubMed Google Scholar
Miyoshi, E., Moriwaki, K. & Nakagawa, T. Biological function of fucosylation in cancer biology. J. Biochem. 143, 725–729 (2008).
Article CAS PubMed Google Scholar
Cummings, R. D. The repertoire of glycan determinants in the human glycome. Mol. Biosyst. 5, 1087–1104 (2009).
Article CAS PubMed Google Scholar
Tsuji, S., Datta, A. K. & Paulson, J. C. Systematic nomenclature for sialyltransferases. Glycobiology 6, v–vii (1996).
Oriol, R., Mollicone, R., Cailleau, A., Balanzino, L. & Breton, C. Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria. Glycobiology 9, 323–334 (1999).
Article CAS PubMed Google Scholar
Varki, A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 446, 1023–1029 (2007).
Article CAS PubMed Google Scholar
Illés, T., Fischer, J. & Szabó, G. Lectin histochemistry of pathological bones. Bull. Hosp Jt. Dis. 58, 206–211 (1999).
Takahata, M. et al. Sialylation of cell surface glycoconjugates is essential for osteoclastogenesis. Bone 41, 77–86 (2007).
Article CAS PubMed Google Scholar
Takeuchi, T. et al. Glucosamine suppresses osteoclast differentiation through the modulation of glycosylation including O-GlcNAcylation. Biol. Pharm. Bull. 40, 352–356 (2017).
Article CAS PubMed Google Scholar
Boyle, W., Simonet, W. & Lacey, D. Osteoclast differentiation and activation. Nature 423, 337–342 (2003).
Article CAS PubMed Google Scholar
Dou, C. et al. Sialylation of TLR2 initiates osteoclast fusion. Bone Res. 10, 24 (2022).
Article CAS PubMed PubMed Central Google Scholar
Zhang, W. et al. RANK(+)TLR2(+) myeloid subpopulation converts autoimmune to joint destruction in rheumatoid arthritis. Elife 12, e85553 (2023).
Article PubMed PubMed Central Google Scholar
Kaighn, M. E., Narayan, K. S., Ohnuki, Y., Lechner, J. F. & Jones, L. W. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Investig. Urol. 17, 16–23 (1979).
Inder, K. et al. Cavin-1/PTRF alters prostate cancer cell-derived extracellular vesicle content and internalization to attenuate extracellular vesicle-mediated osteoclastogenesis and osteoblast proliferation. J. Extracell. Vesicles. https://doi.org/10.3402/jev.v3.23784 (2014).
Kaifu, T. et al. DCIR and its ligand asialo-biantennary N-glycan regulate DC function and osteoclastogenesis. J. Exp. Med. 218, e2
Comments (0)