Activation of angiotensin-converting enzyme 2 produces an antidepressant-like effect via MAS receptors in mice

Mazza MG, De Lorenzo R, Conte C, Poletti S, Vai B, Bollettini I, Melloni EMT, Furlan R, Ciceri F, Rovere-Querini P, Benedetti F. Anxiety and depression in COVID-19 survivors: role of inflammatory and clinical predictors. Brain Behav Immun. 2020;89:594–600.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng J, Zhou F, Hou W, Silver Z, Wong CY, Chang O, Huang E, Zuo QK. The prevalence of depression, anxiety, and sleep disturbances in COVID-19 patients: a meta-analysis. Ann N Y Acad Sci. 2021;1486:90–111.

Article  CAS  PubMed  Google Scholar 

Renaud-Charest O, Lui LMW, Eskander S, Ceban F, Ho R, Di Vincenzo JD, Rosenblat JD, Lee Y, Subramaniapillai M, McIntyre RS. Onset and frequency of depression in post-COVID-19 syndrome: a systematic review. J Psychiatr Res. 2021;144:129–37.

Article  PubMed  PubMed Central  Google Scholar 

Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008;455:894–902.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hall JE, Guyton AC, Mizelle HL. Role of the renin-angiotensin system in control of sodium excretion and arterial pressure. Acta Physiol Scand Suppl. 1990;591:48–62.

CAS  PubMed  Google Scholar 

Leung PS. The physiology of a local renin-angiotensin system in the pancreas. J Physiol. 2007;580:31–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Touyz RM, Schiffrin EL. Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev. 2000;52:639–72.

CAS  PubMed  Google Scholar 

Suzuki Y, Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Egido J. Inflammation and angiotensin II. Int J Biochem Cell Biol. 2003;35:881–900.

Article  CAS  PubMed  Google Scholar 

Chabrashvili T, Kitiyakara C, Blau J, Karber A, Aslam S, Welch WJ, Wilcox CS. Effects of ANG II type 1 and 2 receptors on oxidative stress, renal NADPH oxidase, and SOD expression. Am J Physiol Regul Integr Comp Physiol. 2003;285:R117–124.

Article  CAS  PubMed  Google Scholar 

Patel S, Hussain T. Dimerization of AT(2) and mas receptors in control of blood pressure. Curr Hypertens Rep. 2018;20:41.

Article  PubMed  PubMed Central  Google Scholar 

Kukida M, Mogi M, Kan-No H, Tsukuda K, Bai HY, Shan BS, Yamauchi T, Higaki A, Min LJ, Iwanami J, et al. AT2 receptor stimulation inhibits phosphate-induced vascular calcification. Kidney Int. 2019;95:138–48.

Article  CAS  PubMed  Google Scholar 

Saavedra JM, Sánchez-Lemus E, Benicky J. Blockade of brain angiotensin II AT1 receptors ameliorates stress, anxiety, brain inflammation and ischemia: therapeutic implications. Psychoneuroendocrinology. 2011;36:1–18.

Article  CAS  PubMed  Google Scholar 

Deicken RF. Captopril treatment of depression. Biol Psychiatry. 1986;21:1425–8.

Article  CAS  PubMed  Google Scholar 

Germain L, Chouinard G. Treatment of recurrent unipolar major depression with captopril. Biol Psychiatry. 1988;23:637–41.

Article  CAS  PubMed  Google Scholar 

Santos RA, Ferreira AJ, Verano-Braga T, Bader M. Angiotensin-converting enzyme 2, angiotensin-(1–7) and mas: new players of the renin-angiotensin system. J Endocrinol. 2013;216:R1–r17.

Article  CAS  PubMed  Google Scholar 

Simões e Silva AC, Silveira KD, Ferreira AJ, Teixeira MM. ACE2, angiotensin-(1–7) and mas receptor axis in inflammation and fibrosis. Br J Pharmacol. 2013;169:477–92.

Article  PubMed  PubMed Central  Google Scholar 

Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/Angiotensin-(1–7)/MAS Axis of the renin-angiotensin system: focus on Angiotensin-(1–7). Physiol Rev. 2018;98:505–53.

Article  CAS  PubMed  Google Scholar 

Castro CH, Santos RA, Ferreira AJ, Bader M, Alenina N, Almeida AP. Evidence for a functional interaction of the angiotensin-(1–7) receptor mas with AT1 and AT2 receptors in the mouse heart. Hypertension. 2005;46:937–42.

Article  PubMed  Google Scholar 

Savergnini SQ, Beiman M, Lautner RQ, de Paula-Carvalho V, Allahdadi K, Pessoa DC, Costa-Fraga FP, Fraga-Silva RA, Cojocaru G, Cohen Y, et al. Vascular relaxation, antihypertensive effect, and cardioprotection of a novel peptide agonist of the MAS receptor. Hypertension. 2010;56:112–20.

Article  CAS  PubMed  Google Scholar 

Jiang T, Gao L, Shi J, Lu J, Wang Y, Zhang Y. Angiotensin-(1–7) modulates renin-angiotensin system associated with reducing oxidative stress and attenuating neuronal apoptosis in the brain of hypertensive rats. Pharmacol Res. 2013;67:84–93.

Article  CAS  PubMed  Google Scholar 

Vian J, Pereira C, Chavarria V, Köhler C, Stubbs B, Quevedo J, Kim SW, Carvalho AF, Berk M, Fernandes BS. The renin-angiotensin system: a possible new target for depression. BMC Med. 2017;15:144.

Article  PubMed  PubMed Central  Google Scholar 

Kulemina LV, Ostrov DA. Prediction of off-target effects on angiotensin-converting enzyme 2. J Biomol Screen. 2011;16:878–85.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Liu J, Luo JY, Tian XY, Cheang WS, Xu J, Lau CW, Wang L, Wong WT, Wong CM, et al. Upregulation of angiotensin (1–7)-Mediated signaling preserves endothelial function through reducing oxidative stress in diabetes. Antioxid Redox Signal. 2015;23:880–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kangussu LM, Almeida-Santos AF, Bader M, Alenina N, Fontes MA, Santos RA, Aguiar DC, Campagnole-Santos MJ. Angiotensin-(1–7) attenuates the anxiety and depression-like behaviors in transgenic rats with low brain angiotensinogen. Behav Brain Res. 2013;257:25–30.

Article  CAS  PubMed  Google Scholar 

Almeida-Santos AF, Kangussu LM, Moreira FA, Santos RA, Aguiar DC, Campagnole-Santos MJ. Anxiolytic- and antidepressant-like effects of angiotensin-(1–7) in hypertensive transgenic (mRen2)27 rats. Clin Sci (Lond). 2016;130:1247–55.

Article  CAS  PubMed  Google Scholar 

De Sousa RAL, Improta-Caria AC, Aras-Júnior R, de Oliveira EM, Soci ÚPR, Cassilhas RC. Physical exercise effects on the brain during COVID-19 pandemic: links between mental and cardiovascular health. Neurol Sci. 2021;42:1325–34.

Article  PubMed  PubMed Central  Google Scholar 

Voigt JP, Hörtnagl H, Rex A, van Hove L, Bader M, Fink H. Brain angiotensin and anxiety-related behavior: the transgenic rat TGR(ASrAOGEN)680. Brain Res. 2005;1046:145–56.

Article  CAS  PubMed  Google Scholar 

Moniwa N, Varagic J, Simington SW, Ahmad S, Nagata S, Voncannon JL, Ferrario CM. Primacy of angiotensin converting enzyme in angiotensin-(1–12) metabolism. Am J Physiol Heart Circ Physiol. 2013;305:H644–650.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nemoto W, Yamagata R, Ogata Y, Nakagawasai O, Tadano T, Tan-No K. Inhibitory effect of angiotensin (1–7) on angiotensin III-induced nociceptive behaviour in mice. Neuropeptides. 2017;65:71–6.

Article  CAS  PubMed  Google Scholar 

Klempin F, Mosienko V, Matthes S, Villela DC, Todiras M, Penninger JM, Bader M, Santos RAS, Alenina N. Depletion of angiotensin-converting enzyme 2 reduces brain serotonin and impairs the running-induced neurogenic response. Cell Mol Life Sci. 2018;75:3625–34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003;301:805–9.

Article  CAS  PubMed  Google Scholar 

Pehrson AL, Roberts D, Khawaja A, McNair R. The role of serotonin neurotransmission in rapid antidepressant actions. Psychopharmacology. 2022;239:1823–38.

Article  CAS  PubMed  Google Scholar 

Qaradakhi T, Gadanec LK, McSweeney KR, Tacey A, Apostolopoulos V, Levinger I, Rimarova K, Egom EE, Rodrigo L, Kruzliak P, et al. The potential actions of angiotensin-converting enzyme II (ACE2) activator diminazene aceturate (DIZE) in various diseases. Clin Exp Pharmacol Physiol. 2020;47:751–8.

Article  CAS  PubMed  Google Scholar 

Almeida-Santos AF, de Melo LA, Goncalves SCA, Oliveira Amaral LB, Santos RAS, Campagnole-Santos MJ, Kangussu LM. Alamandine through MrgD receptor induces antidepressant-like effect in transgenic rats with low brain angiotensinogen. Horm Behav. 2021;127:104880.

Article  CAS  PubMed  Google Scholar 

Mecca AP, Regenhardt RW, O’Connor TE, Joseph JP, Raizada MK, Katovich MJ, Sumners C. Cerebroprotection by angiotensin-(1–7) in endothelin-1-induced ischaemic stroke. Exp Phys

Comments (0)

No login
gif