Serotonin enhances neurogenesis biomarkers, hippocampal volumes, and cognitive functions in Alzheimer’s disease

Alenina N, Klempin F. The role of serotonin in adult hippocampal neurogenesis. Behav Brain Res. 2015;277:49–57.

Article  CAS  PubMed  Google Scholar 

Benninghoff J, Van Der Ven A, Schloesser RJ, Moessner R, Möller HJ, Rujescu D. The complex role of the serotonin transporter in adult neurogenesis and neuroplasticity. A critical review. World J Biol Psychiatry. 2012;13(4):240–7.

Article  PubMed  Google Scholar 

Nitsche MA, Kuo M-F, Karrasch R, Wächter B, Liebetanz D, Paulus W. Serotonin affects transcranial direct current–induced neuroplasticity in humans. Biol Psychiat. 2009;66(5):503–8.

Article  CAS  PubMed  Google Scholar 

Kempermann G, Song H, Gage FH. Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Biol. 2015;7(9):a018812.

Article  PubMed  PubMed Central  Google Scholar 

Bird CM, Burgess N. The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci. 2008;9(3):182–94.

Article  CAS  PubMed  Google Scholar 

Epp JR, Chow C, Galea LA. Hippocampus-dependent learning influences hippocampal neurogenesis. Front Neurosci. 2013;7:57.

Article  PubMed  PubMed Central  Google Scholar 

Akram N, Faisal Z, Irfan R, Shah YA, Batool SA, Zahid T, et al. Exploring the serotonin-probiotics-gut health axis: a review of current evidence and potential mechanisms. Food Sci Nutr. 2024;12(2):694–706.

Article  CAS  PubMed  Google Scholar 

Kanova M, Kohout P. Serotonin—its synthesis and roles in the healthy and the critically ill. Int J Mol Sci. 2021;22(9):4837.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carr GV, Lucki I. The role of serotonin in depression. Handbook of behavioral neuroscience. Amsterdam: Elsevier; 2010. p. 493–505.

Book  Google Scholar 

Eremin DV, Kondaurova EM, Rodnyy AY, Molobekova CA, Kudlay DA, Naumenko VS. Serotonin receptors as a potential target in the treatment of Alzheimer’s disease. Biochem Mosc. 2023;88(12):2023–42.

Article  CAS  Google Scholar 

Banasr M, Hery M, Printemps R, Daszuta A. Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology. 2004;29(3):450–60. https://doi.org/10.1038/sj.npp.1300320.

Article  CAS  PubMed  Google Scholar 

Radley JJ, Jacobs BL. 5-HT1A receptor antagonist administration decreases cell proliferation in the dentate gyrus. Brain Res. 2002;955(1–2):264–7.

Article  CAS  PubMed  Google Scholar 

Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci. 2000;20(24):9104–10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azargoonjahromi A, Abutalebian F, Hoseinpour F. The role of resveratrol in neurogenesis: a systematic review. Nutr Rev. 2024. https://doi.org/10.1093/nutrit/nuae025.

Article  PubMed  Google Scholar 

Olivas-Cano I, Rodriguez-Andreu J, Blasco-Ibañez JM, Crespo C, Nácher J, Varea E. Fluoxetine increased adult neurogenesis is mediated by 5-HT3 receptor. Neurosci Lett. 2023;795:137027.

Article  CAS  PubMed  Google Scholar 

Encinas JM, Vaahtokari A, Enikolopov G. Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci. 2006;103(21):8233–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang G, Stackman RW Jr. The role of serotonin 5-HT2A receptors in memory and cognition. Front Pharmacol. 2015;6:225. https://doi.org/10.3389/fphar.2015.00225.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maroteaux L, Kilic F. Frontiers of serotonin beyond the brain. Pharmacol Res. 2019;140:1–6. https://doi.org/10.1016/j.phrs.2018.10.022.

Article  PubMed  Google Scholar 

Higuchi Y, Arakawa H. Serotonergic mediation of the brain-wide neurogenesis: region-dependent and receptor-type specific roles on neurogenic cellular transformation. Curr Res Neurobiol. 2023;5:100102. https://doi.org/10.1016/j.crneur.2023.100102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song N-N, Jia Y-F, Zhang L, Zhang Q, Huang Y, Liu X-Z, et al. Reducing central serotonin in adulthood promotes hippocampal neurogenesis. Sci Rep. 2016;6(1):20338. https://doi.org/10.1038/srep20338.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sidorova M, Kronenberg G, Matthes S, Petermann M, Hellweg R, Tuchina O, et al. Enduring effects of conditional brain serotonin knockdown, followed by recovery, on adult rat neurogenesis and behavior. Cells. 2021. https://doi.org/10.3390/cells10113240.

Article  PubMed  PubMed Central  Google Scholar 

Homberg JR, Molteni R, Calabrese F, Riva MA. The serotonin–BDNF duo: developmental implications for the vulnerability to psychopathology. Neurosci Biobehav Rev. 2014;43:35–47.

Article  CAS  PubMed  Google Scholar 

Correia AS, Cardoso A, Vale N. BDNF unveiled: exploring its role in major depression disorder serotonergic imbalance and associated stress conditions. Pharmaceutics. 2023. https://doi.org/10.3390/pharmaceutics15082081.

Article  PubMed  PubMed Central  Google Scholar 

Musumeci G, Castrogiovanni P, Castorina S, Imbesi R, Szychlinska MA, Scuderi S, et al. Changes in serotonin (5-HT) and brain-derived neurotrophic factor (BDFN) expression in frontal cortex and hippocampus of aged rat treated with high tryptophan diet. Brain Res Bull. 2015;119:12–8. https://doi.org/10.1016/j.brainresbull.2015.09.010.

Article  CAS  PubMed  Google Scholar 

Arosio B, Guerini FR, Voshaar RCO, Aprahamian I. Blood brain-derived neurotrophic factor (BDNF) and major depression: do we have a translational perspective? Front Behav Neurosci. 2021. https://doi.org/10.3389/fnbeh.2021.626906.

Article  PubMed  PubMed Central  Google Scholar 

Pietrelli A, Matković L, Vacotto M, Lopez-Costa JJ, Basso N, Brusco A. Aerobic exercise upregulates the BDNF-Serotonin systems and improves the cognitive function in rats. Neurobiol Learn Mem. 2018;155:528–42. https://doi.org/10.1016/j.nlm.2018.05.007.

Article  CAS  PubMed  Google Scholar 

Bhattarai P, Cosacak MI, Mashkaryan V, Demir S, Popova SD, Govindarajan N, et al. Neuron-glia interaction through Serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer’s model of adult zebrafish brain. PLoS Biol. 2020;18(1):e3000585. https://doi.org/10.1371/journal.pbio.3000585.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kraus C, Hahn A, Savli M, Kranz GS, Baldinger P, Höflich A, et al. Serotonin-1A receptor binding is positively associated with gray matter volume—a multimodal neuroimaging study combining PET and structural MRI. Neuroimage. 2012;63(3):1091–8. https://doi.org/10.1016/j.neuroimage.2012.07.035.

Article  CAS  PubMed  Google Scholar 

Zanderigo F, Pantazatos S, Rubin-Falcone H, Ogden RT, Chhetry BT, Sullivan G, et al. In vivo relationship between serotonin 1A receptor binding and gray matter volume in the healthy brain and in major depressive disorder. Brain Struct Funct. 2018;223(6):2609–25. https://doi.org/10.1007/s00429-018-1649-6.

Article  CAS  PubMed 

Comments (0)

No login
gif