Alenina N, Klempin F. The role of serotonin in adult hippocampal neurogenesis. Behav Brain Res. 2015;277:49–57.
Article CAS PubMed Google Scholar
Benninghoff J, Van Der Ven A, Schloesser RJ, Moessner R, Möller HJ, Rujescu D. The complex role of the serotonin transporter in adult neurogenesis and neuroplasticity. A critical review. World J Biol Psychiatry. 2012;13(4):240–7.
Nitsche MA, Kuo M-F, Karrasch R, Wächter B, Liebetanz D, Paulus W. Serotonin affects transcranial direct current–induced neuroplasticity in humans. Biol Psychiat. 2009;66(5):503–8.
Article CAS PubMed Google Scholar
Kempermann G, Song H, Gage FH. Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Biol. 2015;7(9):a018812.
Article PubMed PubMed Central Google Scholar
Bird CM, Burgess N. The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci. 2008;9(3):182–94.
Article CAS PubMed Google Scholar
Epp JR, Chow C, Galea LA. Hippocampus-dependent learning influences hippocampal neurogenesis. Front Neurosci. 2013;7:57.
Article PubMed PubMed Central Google Scholar
Akram N, Faisal Z, Irfan R, Shah YA, Batool SA, Zahid T, et al. Exploring the serotonin-probiotics-gut health axis: a review of current evidence and potential mechanisms. Food Sci Nutr. 2024;12(2):694–706.
Article CAS PubMed Google Scholar
Kanova M, Kohout P. Serotonin—its synthesis and roles in the healthy and the critically ill. Int J Mol Sci. 2021;22(9):4837.
Article CAS PubMed PubMed Central Google Scholar
Carr GV, Lucki I. The role of serotonin in depression. Handbook of behavioral neuroscience. Amsterdam: Elsevier; 2010. p. 493–505.
Eremin DV, Kondaurova EM, Rodnyy AY, Molobekova CA, Kudlay DA, Naumenko VS. Serotonin receptors as a potential target in the treatment of Alzheimer’s disease. Biochem Mosc. 2023;88(12):2023–42.
Banasr M, Hery M, Printemps R, Daszuta A. Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology. 2004;29(3):450–60. https://doi.org/10.1038/sj.npp.1300320.
Article CAS PubMed Google Scholar
Radley JJ, Jacobs BL. 5-HT1A receptor antagonist administration decreases cell proliferation in the dentate gyrus. Brain Res. 2002;955(1–2):264–7.
Article CAS PubMed Google Scholar
Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci. 2000;20(24):9104–10.
Article CAS PubMed PubMed Central Google Scholar
Azargoonjahromi A, Abutalebian F, Hoseinpour F. The role of resveratrol in neurogenesis: a systematic review. Nutr Rev. 2024. https://doi.org/10.1093/nutrit/nuae025.
Olivas-Cano I, Rodriguez-Andreu J, Blasco-Ibañez JM, Crespo C, Nácher J, Varea E. Fluoxetine increased adult neurogenesis is mediated by 5-HT3 receptor. Neurosci Lett. 2023;795:137027.
Article CAS PubMed Google Scholar
Encinas JM, Vaahtokari A, Enikolopov G. Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci. 2006;103(21):8233–8.
Article CAS PubMed PubMed Central Google Scholar
Zhang G, Stackman RW Jr. The role of serotonin 5-HT2A receptors in memory and cognition. Front Pharmacol. 2015;6:225. https://doi.org/10.3389/fphar.2015.00225.
Article CAS PubMed PubMed Central Google Scholar
Maroteaux L, Kilic F. Frontiers of serotonin beyond the brain. Pharmacol Res. 2019;140:1–6. https://doi.org/10.1016/j.phrs.2018.10.022.
Higuchi Y, Arakawa H. Serotonergic mediation of the brain-wide neurogenesis: region-dependent and receptor-type specific roles on neurogenic cellular transformation. Curr Res Neurobiol. 2023;5:100102. https://doi.org/10.1016/j.crneur.2023.100102.
Article CAS PubMed PubMed Central Google Scholar
Song N-N, Jia Y-F, Zhang L, Zhang Q, Huang Y, Liu X-Z, et al. Reducing central serotonin in adulthood promotes hippocampal neurogenesis. Sci Rep. 2016;6(1):20338. https://doi.org/10.1038/srep20338.
Article CAS PubMed PubMed Central Google Scholar
Sidorova M, Kronenberg G, Matthes S, Petermann M, Hellweg R, Tuchina O, et al. Enduring effects of conditional brain serotonin knockdown, followed by recovery, on adult rat neurogenesis and behavior. Cells. 2021. https://doi.org/10.3390/cells10113240.
Article PubMed PubMed Central Google Scholar
Homberg JR, Molteni R, Calabrese F, Riva MA. The serotonin–BDNF duo: developmental implications for the vulnerability to psychopathology. Neurosci Biobehav Rev. 2014;43:35–47.
Article CAS PubMed Google Scholar
Correia AS, Cardoso A, Vale N. BDNF unveiled: exploring its role in major depression disorder serotonergic imbalance and associated stress conditions. Pharmaceutics. 2023. https://doi.org/10.3390/pharmaceutics15082081.
Article PubMed PubMed Central Google Scholar
Musumeci G, Castrogiovanni P, Castorina S, Imbesi R, Szychlinska MA, Scuderi S, et al. Changes in serotonin (5-HT) and brain-derived neurotrophic factor (BDFN) expression in frontal cortex and hippocampus of aged rat treated with high tryptophan diet. Brain Res Bull. 2015;119:12–8. https://doi.org/10.1016/j.brainresbull.2015.09.010.
Article CAS PubMed Google Scholar
Arosio B, Guerini FR, Voshaar RCO, Aprahamian I. Blood brain-derived neurotrophic factor (BDNF) and major depression: do we have a translational perspective? Front Behav Neurosci. 2021. https://doi.org/10.3389/fnbeh.2021.626906.
Article PubMed PubMed Central Google Scholar
Pietrelli A, Matković L, Vacotto M, Lopez-Costa JJ, Basso N, Brusco A. Aerobic exercise upregulates the BDNF-Serotonin systems and improves the cognitive function in rats. Neurobiol Learn Mem. 2018;155:528–42. https://doi.org/10.1016/j.nlm.2018.05.007.
Article CAS PubMed Google Scholar
Bhattarai P, Cosacak MI, Mashkaryan V, Demir S, Popova SD, Govindarajan N, et al. Neuron-glia interaction through Serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer’s model of adult zebrafish brain. PLoS Biol. 2020;18(1):e3000585. https://doi.org/10.1371/journal.pbio.3000585.
Article CAS PubMed PubMed Central Google Scholar
Kraus C, Hahn A, Savli M, Kranz GS, Baldinger P, Höflich A, et al. Serotonin-1A receptor binding is positively associated with gray matter volume—a multimodal neuroimaging study combining PET and structural MRI. Neuroimage. 2012;63(3):1091–8. https://doi.org/10.1016/j.neuroimage.2012.07.035.
Article CAS PubMed Google Scholar
Zanderigo F, Pantazatos S, Rubin-Falcone H, Ogden RT, Chhetry BT, Sullivan G, et al. In vivo relationship between serotonin 1A receptor binding and gray matter volume in the healthy brain and in major depressive disorder. Brain Struct Funct. 2018;223(6):2609–25. https://doi.org/10.1007/s00429-018-1649-6.
Comments (0)