Al Ma’ani M, Nelson A, Castillo Diaz F, Specner AL, Khurshid MH, Anand T, Hejazi O, Ditillo M, Magnotti LJ, Joseph B (2025) A narrative review: Resuscitation of older adults with hemorrhagic shock. Transfusion. https://doi.org/10.1111/trf.18173
Cannon JW (2018) Hemorrhagic Shock. N Engl J Med 378:370–379. https://doi.org/10.1056/NEJMra1705649
Torres Filho I (2017) Hemorrhagic shock and the microvasculature. Compr Physiol 8:61–101. https://doi.org/10.1002/cphy.c170006
Meza Monge K, Ardon-Lopez A, Pratap A, Idrovo JP (2025) Targeting inflammation after hemorrhagic shock as a molecular and experimental journey to improve outcomes: A review. Cureus 17:e77776. https://doi.org/10.7759/cureus.77776
Article PubMed PubMed Central Google Scholar
Chang R, Holcomb JB (2017) Optimal fluid therapy for traumatic hemorrhagic shock. Crit Care Clin 33:15–36. https://doi.org/10.1016/j.ccc.2016.08.007
Article PubMed PubMed Central Google Scholar
Hussmann B, Lendemans S, de Groot H, Rohrig R (2014) Volume replacement with Ringer-lactate is detrimental in severe hemorrhagic shock but protective in moderate hemorrhagic shock: studies in a rat model. Crit Care 18:R5. https://doi.org/10.1186/cc13182
Article PubMed PubMed Central Google Scholar
Kalkan E, Eser O, Avunduk MC, Coşar M, Fidan H, Kalkan S (2006) Apoptosis and cerebral ischemic reperfusion injury developed after haemorrhagic shock: experimental study. Ulus Travma Acil Cerrahi Derg 12:263–267
Yu ZY, Ono S, Spatz M, McCarron RM (2002) Effect of hemorrhagic shock on apoptosis and energy-dependent efflux system in the brain. Neurochem Res 27:1625–1632. https://doi.org/10.1023/a:1021630926302
Article CAS PubMed Google Scholar
Fu L, Zhang LM, Guan LN, Song YC, Zhang DX, Kang LQ, Liu FH (2023) Advanced MRI to assess hippocampal injury after incomplete cerebral ischemia-reperfusion in rats. J Neuroimaging 33:742–751. https://doi.org/10.1111/jon.13134
Lin T, Koustova E, Chen H, Rhee PM, Kirkpatrick J, Alam HB (2005) Energy substrate-supplemented resuscitation affects brain monocarboxylate transporter levels and gliosis in a rat model of hemorrhagic shock. J Trauma 59:1191–1202. https://doi.org/10.1097/01.ta.0000188646.86995.9d
Article CAS PubMed Google Scholar
Hertz L (2008) Bioenergetics of cerebral ischemia: a cellular perspective. Neuropharmacology 55:289–309. https://doi.org/10.1016/j.neuropharm.2008.05.023
Article CAS PubMed Google Scholar
Neumann JT, Cohan CH, Dave KR, Wright CB, Perez-Pinzon MA (2013) Global cerebral ischemia: synaptic and cognitive dysfunction. Curr Drug Targets 14:20–35. https://doi.org/10.2174/138945013804806514
Article CAS PubMed PubMed Central Google Scholar
Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568. https://doi.org/10.1152/physrev.1999.79.4.1431
Article CAS PubMed Google Scholar
Deb P, Sharma S, Hassan KM (2010) Pathophysiologic mechanisms of acute ischemic stroke: An overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology 17:197–218. https://doi.org/10.1016/j.pathophys.2009.12.001
Article CAS PubMed Google Scholar
Plaschke K (2009) Human adult mesenchymal stem cells improve rat spatial cognitive function after systemic hemorrhagic shock. Behav Brain Res 201:332–337. https://doi.org/10.1016/j.bbr.2009.03.009
Duschek S, Schandry R (2007) Reduced brain perfusion and cognitive performance due to constitutional hypotension. Clin Auton Res 17:69–76. https://doi.org/10.1007/s10286-006-0379-7
Wharton W, Hirshman E, Merritt P, Stangl B, Scanlin K, Krieger L (2006) Lower blood pressure correlates with poorer performance on visuospatial attention tasks in younger individuals. Biol Psychol 73:227–234. https://doi.org/10.1016/j.biopsycho.2006.04.002
Linden J, Koch-Nolte F, Dahl G (2019) Purine Release, Metabolism, and Signaling in the Inflammatory Response. Annu Rev Immunol 37:325–347. https://doi.org/10.1146/annurev-immunol-051116-052406
Article CAS PubMed Google Scholar
Burnstock G (2017) Purinergic Signaling in the Cardiovascular System. Circ Res 120:207–228. https://doi.org/10.1161/CIRCRESAHA.116.309726
Article CAS PubMed Google Scholar
Reiss AB, Grossfeld D, Kasselman LJ, Renna HA, Vernice NA, Drewes W, Konig J, Carsons SE, DeLeon J (2019) Adenosine and the Cardiovascular System. Am J Cardiovasc Drugs 19:449–464. https://doi.org/10.1007/s40256-019-00345-5
Article CAS PubMed PubMed Central Google Scholar
Liaudet L, Mabley JG, Soriano FG, Pacher P, Marton A, Haskó G, Szabó C (2001) Inosine reduces systemic inflammation and improves survival in septic shock induced by cecal ligation and puncture. Am J Respir Crit Care Med 164:1213–1220. https://doi.org/10.1164/ajrccm.164.7.2101013
Article CAS PubMed Google Scholar
Darlington DN, Gann DS (2005) Purine nucleosides stimulate Na/K ATPase, and prolong survival in hemorrhagic shock. J Trauma 58:1055–1060. https://doi.org/10.1097/01.ta.0000169801.08019.b9
Article CAS PubMed Google Scholar
Darlington DN, Gann DS (2005) Adenosine stimulates Na/K ATPase and prolongs survival in hemorrhagic shock. J Trauma 58:1–6. https://doi.org/10.1097/01.ta.0000151185.63058.e3
Article CAS PubMed Google Scholar
Darlington DN, Gann DS (2005) Inosine infusion prevents mortality in endotoxic shock. J Trauma 59:1432–1435. https://doi.org/10.1097/01.ta.0000196007.34175.46
Article CAS PubMed Google Scholar
Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797. https://doi.org/10.1152/physrev.00043.2006
Article CAS PubMed Google Scholar
Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7:575–590. https://doi.org/10.1038/nrd2605
Article CAS PubMed Google Scholar
Schmidt AP, Lara DR, Souza DO (2007) Proposal of a guanine-based purinergic system in the mammalian central nervous system. Pharmacol Ther 116:401–416. https://doi.org/10.1016/j.pharmthera.2007.07.004
Article CAS PubMed Google Scholar
Hansel G, Ramos DB, Delgado CA, Souza DG, Almeida RF, Portela LV, Quincozes-Santos A, Souza DO (2014) The potential therapeutic effect of guanosine after cortical focal ischemia in rats. PLoS ONE 9:e90693. https://doi.org/10.1371/journal.pone.0090693
Article CAS PubMed PubMed Central Google Scholar
Ganzella M, Faraco RB, Almeida RF, Fernandes VF, Souza DO (2011) Intracerebroventricular administration of inosine is anticonvulsant against quinolinic acid-induced seizures in mice: an effect independent of benzodiazepine and adenosine receptors. Pharmacol Biochem Behav 100:271–274. https://doi.org/10.1016/j.pbb.2011.09.001
Comments (0)