State of the art indicators for imaging purinergic dynamics in vitro and in vivo

Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

Article  CAS  PubMed  Google Scholar 

Wu Z, Li Y (2020) New frontiers in probing the dynamics of purinergic transmitters in vivo. Neurosci Res 152:35–43

Article  PubMed  PubMed Central  Google Scholar 

Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen JF, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets–what are the challenges? Nat Rev Drug Discov 12:265–286

Article  CAS  PubMed  PubMed Central  Google Scholar 

Drury AN, Szent-Gyorgyi A (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol 68:213–237

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lazarus M, Chen JF, Huang ZL, Urade Y, Fredholm BB (2019) Adenosine and Sleep. Handb Exp Pharmacol 253:359–381

Article  CAS  PubMed  Google Scholar 

Khakh BS, Burnstock G (2009) The double life of ATP. Sci Am 301:84–90, 92

Dale N (2021) Biological insights from the direct measurement of purine release. Biochem Pharmacol 187

Hayashi S, Hazama A, Dutta AK, Sabirov RZ, Okada Y (2004) Detecting ATP release by a biosensor method. Sci STKE 2004:pl14

Zhang Q et al (2019) Differential co-release of two neurotransmitters from a vesicle fusion pore in mammalian adrenal chromaffin cells. Neuron 102:173–183 e174

Wu Z, Lin D, Li Y (2022) Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators. Nat Rev Neurosci 23:257–274

Article  CAS  PubMed  PubMed Central  Google Scholar 

Porkka-Heiskanen T et al (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276:1265–1268

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bito L, Davson H, Levin E, Murray M, Snider N (1966) The concentrations of free amino acids and other electrolytes in cerebrospinal fluid, in vivo dialysate of brain, and blood plasma of the dog. J Neurochem 13:1057–1067

Article  CAS  PubMed  Google Scholar 

Porkka-Heiskanen T, Strecker RE, McCarley RW (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99:507–517

Article  CAS  PubMed  Google Scholar 

Gourine AV, Llaudet E, Dale N, Spyer KM (2005) ATP is a mediator of chemosensory transduction in the central nervous system. Nature 436:108–111

Article  CAS  PubMed  Google Scholar 

Dale N, Pearson T, Frenguelli BG (2000) Direct measurement of adenosine release during hypoxia in the CA1 region of the rat hippocampal slice. J Physiol 526(Pt 1):143–155

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dale N, Frenguelli BG (2012) Measurement of purine release with microelectrode biosensors. Purinergic Signal 8:27–40

Article  CAS  PubMed  Google Scholar 

Nguyen MD et al (2014) Characterization of spontaneous, transient adenosine release in the caudate-putamen and prefrontal cortex. PLoS ONE 9

Li Y, Keller AL, Cryan MT, Ross AE (2022) Metal nanoparticle modified carbon-fiber microelectrodes enhance adenosine triphosphate surface interactions with fast-scan cyclic voltammetry. ACS Meas Sci Au 2:96–105

Article  CAS  PubMed  Google Scholar 

Yang Y, Li B, Li Y (2024) Genetically encoded sensors for the in vivo detection of neurochemical dynamics. Annu Rev Anal Chem (Palo Alto Calif) 17:367–392

Article  CAS  PubMed  Google Scholar 

Frei MS, Mehta S, Zhang J (2024) Next-generation genetically encoded fluorescent biosensors illuminate cell signaling and metabolism. Annu Rev Biophys 53:275–297

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui G et al (2013) Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494:238–242

Article  CAS  PubMed  PubMed Central  Google Scholar 

Menegas W, Babayan BM, Uchida N, Watabe-Uchida M (2017) Opposite initialization to novel cues in dopamine signaling in ventral and posterior striatum in mice. Elife 6

Traut TW (1994) Physiological concentrations of purines and pyrimidines. Mol Cell Biochem 140:1–22

Article  CAS  PubMed  Google Scholar 

Seminario-Vidal L, Lazarowski ER, Okada SF (2009) Assessment of extracellular ATP concentrations. Methods Mol Biol 574:25–36

Article  CAS  PubMed  Google Scholar 

Illes P, Xu GY, Tang Y (2020) Purinergic Signaling in the Central Nervous System in Health and Disease. Neurosci Bull 36:1239–1241

Article  PubMed  PubMed Central  Google Scholar 

Morciano G et al (2017) Use of luciferase probes to measure ATP in living cells and animals. Nat Protoc 12:1542–1562

Article  CAS  PubMed  Google Scholar 

Conley JM, Radhakrishnan S, Valentino SA, Tantama M (2017) Imaging extracellular ATP with a genetically-encoded, ratiometric fluorescent sensor. PLoS ONE 12

Richler E, Chaumont S, Shigetomi E, Sagasti A, Khakh BS (2008) Tracking transmitter-gated P2X cation channel activation in vitro and in vivo. Nat Methods 5:87–93

Article  CAS  PubMed  Google Scholar 

Chappe YL et al (2022) Genetically-encoded BRET probes shed light on ligand bias-induced variable ion selectivity in TRPV1 and P2X5/7. Proc Natl Acad Sci U S A 119

Ollivier M et al (2021) P2X-GCaMPs as versatile tools for imaging extracellular ATP signaling. eNeuro 8

Lobas MA et al (2019) A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP. Nat Commun 10:711

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marvin JS et al (2024) iATPSnFR2: a high-dynamic-range fluorescent sensor for monitoring intracellular ATP. Proc Natl Acad Sci U S A 121

Kitajima N et al (2020) Real-time in vivo imaging of extracellular ATP in the brain with a hybrid-type fluorescent sensor. Elife 9

Wu Z et al (2022) A sensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo. Neuron 110:770–782 e775

Zhong C, Arai S, Okada Y (2024) Development of fluorescence lifetime biosensors for ATP, cAMP, citrate, and glucose using the mTurquoise2-based platform. Cell Rep Methods 4

Hoffmann C et al (2005) A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells. Nat Methods 2:171–176

Article  CAS  PubMed  Google Scholar 

Peng W et al (2020) Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science 369:eabb0556

Wu Z et al (2023) Neuronal activity-induced, equilibrative nucleoside transporter-dependent, somatodendritic adenosine release revealed by a GRAB sensor. Proc Natl Acad Sci U S A 120

Wei Q et al (2025) A high-performance fluorescent sensor spatiotemporally reveals cell-type specific regulation of intracellular adenosine in vivo. Nat Commun 16:4245

Article  CAS  PubMed  PubMed Central  Google Scholar 

Umpierre AD et al (2024) Microglial P2Y(6) calcium signaling promotes phagocytosis and shapes neuroimmune responses in epileptogenesis. Neuron 112:1959–1977 e1910

Beigi R, Kobatake E, Aizawa M, Dubyak GR (1999) Detection of local ATP release from activated platelets using cell surface-attached firefly luciferase. Am J Physiol 276:C267–278

Article  CAS  PubMed  Google Scholar 

Pellegatti P, Falzoni S, Pinton P, Rizzuto R, Di Virgilio F (2005) A novel recombinant plasma membrane-targeted luciferase reveals a new pathway for ATP secretion. Mol Biol Cell 16:3659–3665

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pellegatti P et al (2008) Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS ONE 3

Rangaraju V, Calloway N, Ryan TA (2014) Activity-driven local ATP synthesis is required for synaptic function. Cell 156:825–835

Article  CAS 

Comments (0)

No login
gif