Shafiq U, Hamza A, Mirza AM, Baili J, AlHammadi DA, et al. A novel network-level fused deep learning architecture with shallow neural network classifier for gastrointestinal cancer classification from wireless capsule endoscopy images. BMC Med Inform Decis Making. 2025;25:150.
Wong MC, Huang J, Chan PS, Choi P, Lao XQ, Chan SM, et al. Global incidence and mortality of gastric cancer, 1980–2018. JAMA Network Open. 2021;4:e2118457–e2118457.
F. Sedighipour Chafjiri, "Anatomical Classification of the Gastrointestinal tract Using Ensemble Transfer Learning," University of Saskatchewan, 2023.
Rawla P, Barsouk A. Epidemiology of gastric cancer: global trends, risk factors and prevention. Przeglad Gastroenterol. 2019;14:26.
Melson JE, Imperiale TF, Itzkowitz SH, Llor X, Kochman ML, Grady WM, et al. AGA White Paper: Roadmap for the Future of Colorectal Cancer Screening in the United States. Clin Gastroenterol Hepatol. 2020;18:2667–78.
Rao M, Zhu Y, Qi L, Hu F, Gao P. Circular RNA profiling in plasma exosomes from patients with gastric cancer. Oncol Lett. 2020;20:2199–208.
Lian D, Amin B, Du D, Yan W. Enhanced expression of the long non-coding RNA SNHG16 contributes to gastric cancer progression and metastasis. Cancer Biomarkers. 2018;21:151–60.
Sitarz R, Skierucha M, Mielko J, Offerhaus GJA, Maciejewski R, Polkowski WP. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res. 2018;10:239.
E. Tuba, S. Tomic, M. Beko, D. Zivkovic, and M. Tuba, "Bleeding Detection in Wireless Capsule Endoscopy Images Using Texture and Color Features," in 2018 26th Telecommunications Forum (TELFOR), 2018, pp. 1-4.
X. Xing, X. Jia, and M.-H. Meng, "Bleeding Detection in Wireless Capsule Endoscopy Image Video Using Superpixel-Color Histogram and a Subspace KNN Classifier," in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018, pp. 1-4.
Akarsu M, Akarsu C. Evaluation of new technologies in gastrointestinal endoscopy. JSLS J Soc Laparoend Surg. 2018;22:1.
Gora MJ, Quénéhervé L, Carruth RW, Lu W, Rosenberg M, Sauk JS, et al. Tethered capsule endomicroscopy for microscopic imaging of the esophagus, stomach, and duodenum without sedation in humans (with video). Gastroint Endoscopy. 2018;88:830–40.
Singh P, Arora A, Strand TA, Leffler DA, Catassi C, Green PH, et al. Global prevalence of celiac disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2018;16:823–36.
A. Perperidis, K. Dhaliwal, S. McLaughlin, and T. Vercauteren, "Image computing for fibre-bundle endomicroscopy: A review," arXiv preprint arXiv:1809.00604, 2018.
Souaidi M, Abdelouahed AA, El Ansari M. Multi-scale completed local binary patterns for ulcer detection in wireless capsule endoscopy images. Multimedia Tools Appl. 2019;78:13091–108.
Scally B, Emberson JR, Spata E, Reith C, Davies K, Halls H, et al. Effects of gastroprotectant drugs for the prevention and treatment of peptic ulcer disease and its complications: a meta-analysis of randomised trials. Lancet Gastroenterol Hepatol. 2018;3:231–41.
Jambi HA, Khattab HAE-RH. Potential antioxidant, anti-inflammatory and gastroprotective effect of grape seed extract in indomethacin-induced gastric ulcer in rats. Int J Pharmacol. 2019;15:209–18.
Gemilyan M, Hakobyan G, Benejat L, Allushi B, Melik-Nubaryan D, Mangoyan H, et al. Prevalence of Helicobacter pylori infection and antibiotic resistance profile in Armenia. Gut Pathogens. 2019;11:28.
Collij V, Imhann F, Vila AV, Fu J, Dijkstra G, Festen EA, et al. SLC39A8 missense variant is associated with Crohn’s disease but does not have a major impact on gut microbiome composition in healthy subjects. PloS One. 2019;14:e0211328.
Rimola J, Alfaro I, Fernández-Clotet A, Castro-Poceiro J, Vas D, Rodríguez S, et al. Persistent damage on magnetic resonance enterography in patients with Crohn’s disease in endoscopic remission. Aliment Pharmacol Therapeut. 2018;48:1232–41.
Martincorena I, Fowler JC, Wabik A, Lawson AR, Abascal F, Hall MW, et al. Somatic mutant clones colonize the human esophagus with age. Science. 2018;362:911–7.
G. search, "List of all GI tract endoscopy images " 2020.
Gupta S, Li D, El Serag HB, Davitkov P, Altayar O, Sultan S, et al. AGA clinical practice guidelines on management of gastric intestinal metaplasia. Gastroenterology. 2020;158:693–702.
A. M. Boyce, P. Florenzano, L. F. de Castro, and M. T. Collins, "Fibrous dysplasia/mccune-albright syndrome," in GeneReviews®[Internet], ed: University of Washington, Seattle, 2019.
Sen S, Jain S, Venkataramani S, Raghunathan A. SparCE: Sparsity Aware General-Purpose Core Extensions to Accelerate Deep Neural Networks. IEEE Trans Comp. 2018;68:912–25.
Rioux JE, Devlin MC, Gelfand MM, Steinberg WM, Hepburn DS. 17β-estradiol vaginal tablet versus conjugated equine estrogen vaginal cream to relieve menopausal atrophic vaginitis. Menopause. 2018;25:1208–13.
Kadry S, Alhaisoni M, Nam Y, Zhang Y, Rajinikanth V, et al. Computer-aided gastrointestinal diseases analysis from wireless capsule endoscopy: A framework of best features selection. IEEE Access. 2020;8:132850–9.
K. Pogorelov, "DeepEIR: A Holistic Medical Multimedia System for Gastrointestinal Tract Disease Detection and Localization," 2019.
M. Ramzan, M. Raza, M. Sharif, and Y. Nam, "Gastrointestinal tract infections classification using deep learning," 2021.
Rondonotti E, Spada C, Adler S, May A, Despott EJ, Koulaouzidis A, et al. Small-bowel capsule endoscopy and device-assisted enteroscopy for diagnosis and treatment of small-bowel disorders: European Society of Gastrointestinal Endoscopy (ESGE) technical review. Endoscopy. 2018;50:423–46.
J. Friedlander, J. Prager, E. Deboer, and R. Deterding, "Multi-use scope," ed: Google Patents, 2018.
O. Azeroual, G. Saake, and M. Abuosba, "Data quality measures and data cleansing for research information systems," arXiv preprint arXiv:1901.06208, 2019.
B. M. C. Staff, "Biopsy: Types of biopsy procedures used to diagnose cancer," 2020.
Sivakumar P, Kumar BM. A novel method to detect bleeding frame and region in wireless capsule endoscopy video. Cluster Comp. 2018;1:1–7.
Ozawa T, Ishihara S, Fujishiro M, Saito H, Kumagai Y, Shichijo S, et al. Novel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitis. Gastroint Endoscopy. 2019;89:416–21.
Barakat MT, Girotra M, Huang RJ, Banerjee S. Scoping the scope: endoscopic evaluation of endoscope working channels with a new high-resolution inspection endoscope (with video). Gastroint Endoscopy. 2018;88:601–11.
Nguyen TH, Ahsen OO, Liang K, Zhang J, Mashimo H, Fujimoto JG. Correction of circumferential and longitudinal motion distortion in high-speed catheter/endoscope-based optical coherence tomography. Biomed Opt Exp. 2021;12:226–46.
Di Maio P, Iocca O, De Virgilio A, Giudice M, Pellini R, D’Ascanio L, et al. Narrow band imaging in head and neck unknown primary carcinoma: A systematic review and meta-analysis. Laryngos. 2020;130:1692–700.
Carballal S, Maisterra S, López-Serrano A, Gimeno-García AZ, Vera MI, Marín-Garbriel JC, et al. Real-life chromoendoscopy for neoplasia detection and characterisation in long-standing IBD. Gut. 2018;67:70–8.
Feuerstein JD, Rakowsky S, Sattler L, Yadav A, Foromera J, Grossberg L, et al. Meta-analysis of dye-based chromoendoscopy compared with standard-and high-definition white-light endoscopy in patients with inflammatory bowel disease at increased risk of colon cancer. Gastroint Endoscopy. 2019;90:186–95.
Iacucci M, Kaplan GG, Panaccione R, Akinola O, Lethebe BC, Lowerison M, et al. A randomized trial comparing high definition colonoscopy alone with high definition dye spraying and electronic virtual chromoendoscopy for detection of colonic neoplastic lesions during IBD surveillance colonoscopy. Am J Gastroenterol. 2018;113:225.
Vleugels JL, Rutter MD, Ragunath K, Rees CJ, Ponsioen CY, Lahiff C, et al. Diagnostic Accuracy of Endoscopic Trimodal Imaging and Chromoendoscopy for Lesion Characterization in Ulcerative Colitis. J Crohn’s Colitis. 2018;12:1438–47.
Tsuji S, Takeda Y, Tsuji K, Yoshida N, Takemura K, Yamada S, et al. Clinical outcomes of the “resect and discard” strategy using magnifying narrow-band imaging for small (< 10 mm) colorectal polyps. Endoscopy Int Open. 2018;6:E1382–9.
Tabatabaei N, Kang D, Kim M, Wu T, Grant CN, Rosenberg M, et al. Clinical translation of tethered confocal microscopy capsule for unsedated diagnosis of eosinophilic esophagitis. Sci Reports. 2018;8:2631.
G. search, "All endoscopy Appratus," 2020.
Pogorelov K, Suman S, Azmadi Hussin F, Saeed Malik A, Ostroukhova O, Riegler M, et al. Bleeding detection in wireless capsule endoscopy videos—Color versus texture features. J Appl Clin Med Phys. 2019;20:141–54.
Figueiredo IN, Leal C, Pinto L, Figueiredo PN, Tsai R. Hybrid multiscale affine and elastic image registration approach towards wireless capsule endoscope localization. Biomed Signal Proc Control. 2018;39:486–502.
H. Gammulle, S. Denman, S. Sridharan, and C. Fookes, "Two-Stream Deep Feature Modelling for Automated Video Endoscopy Data Analysis," in International Conference on Medical Image Computing and Computer-Assisted Intervention, 2020, pp. 742-751.
V. Thambawita, D. Jha, H. L. Hammer, H. D. Johansen, D. Johansen, P. Halvorsen, et al., "An Extensive Study on Cross-Dataset Bias and Evaluation Metrics Interpretation for Machine Learning applied to Gastrointestinal Tract Abnormality Classification," arXiv preprint arXiv:2005.03912, 2020.
Li T, Long L. Imaging Examination and Quantitative Detection and Analysis of Gastrointestinal Diseases Based on Data Mining Technology. J Med Syst. 2020;44:31.
Khan MA, Khan MA, Ahmed F, Mittal M, Goyal LM, Hemanth DJ, et al. Gastrointestinal diseases segmentation and classification based on duo-deep architectures. Pattern Recogn Lett. 2020;131:193–204.
Soffer S, Klang E, Shimon O, Nachmias N, Eliakim R, Ben-Horin S, et al. Deep learning for wireless capsule endoscopy: a systematic review and meta-analysis. Gastroint Endoscopy. 2020;92:831.
Struyvenberg MR, De Groof AJ, van der Putten J, van der Sommen F, Baldaque-Silva F, Omae M, et al. A computer-assisted algorithm for narrow-band imaging-based tissue characterization in Barrett’s esophagus. Gastroint Endoscopy. 2021;93:89–98.
M. Rashad, S. Nooh, I. Afifi, and M. Abdelfatah, "Effective of modern techniques on content-based medical image retrieval: a survey," ed, 2022.
Obukhova NA, Motyko AA, Pozdeev AA. Two-Stage Method for Polyps Segmentation in Endoscopic Images. In: Computer Vision in Control Systems. 6th ed. Berlin: Springer; 2020. p. 93–106.
Shen B. Inflammatory bowel disease–associated bleeding. In: Atlas of Endoscopy Imaging in Inflammatory Bowel Disease. US: Elsevier; 2020. p. 551–9.
Kuang Y, Lan T, Peng X, Selasi GE, Liu Q, Zhang J. Unsupervised multi-discriminator generative adversarial network for lung nodule malignancy classification. IEEE Access. 2020;8:77725–34.
Majid A, Yasmin M, Rehman A, Yousafzai A, Tariq U. Classification of stomach infections: A paradigm of convolutional neural network along with classical features fusion and selection. Microscopy Res Tech. 2020;83:562–76.
Jain S, Seal A, Ojha A, Krejcar O, Bureš J, Tachecí I, et al. Detection of abnormality in wireless capsule endoscopy images using fractal features. Comp Biol Med. 2020;127:104094.
Nguyen N-Q, Vo DM, Lee S-W. Contour-Aware Polyp Segmentation in Colonoscopy Images Using Detailed Upsamling Encoder-Decoder Networks. IEEE Access. 2020;8:99495–508.
Gruosso M, Capece N, Erra U. Human segmentation in surveillance video with deep learning. Multimedia Tools Appl. 2020;80:1–25.
Ali H, Sharif M, Yasmin M, Rehmani MH, Riaz F. A survey of feature extraction and fusion of deep learning for detection of abnormalities in video endoscopy of gastrointestinal-tract. Artif Intell Rev. 2020;53:2635–707.
Ono S, Kawada K, Dohi O, Kitamura S, Koike T, Hori S, et al. Linked Color Imaging Focused on Neoplasm Detection in the Upper Gastrointestinal Tract: A Randomized Trial. Ann Internal Med. 2021;174:18–24.
P. Sharma, P. Hans, and S. C. Gupta, "Classification Of Plant Leaf Diseases Using Machine Learning And Image Preprocessing Techniques," in 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), 2020, pp. 480-484.
Münzer B, Schoeffmann K, Böszörmenyi L. Content-based processing and analysis of endoscopic images and videos: A survey. Multimedia Tools Appl. 2018;77:1323–62.
Muslim HSM, Khan SA, Hussain S, Jamal A, Qasim HSA. A knowledge-based image enhancement and denoising approach. Comput Math Organ Theory. 2019;25:108–21.
Khan MW, Sharif M, Yasmin M, Fernandes SL. A new approach of cup to disk ratio based glaucoma detection using fundus images. J Integr Des Proc Sci. 2016;20:77–94.
P. Eze, P. Udaya, R. Evans, and D. Liu, "Comparing Yiq and Ycbcr Colour Image Transforms for Semi-Fragile Medical Image Steganography," 2019.
Sarwinda D, Paradisa RH, Bustamam A, Anggia P. Deep learning in image classification using residual network (ResNet) variants for detection of colorectal cancer. Proc Comp Sci. 2021;179:423–31.
Sundara Vadivel P, Yuvaraj D, Navaneetha Krishnan S, Mathusudhanan S. An efficient CBIR system based on color histogram, edge, and texture featu
Comments (0)