A review on computer-aided diagnostic system to classify the disorders of the gastrointestinal tract

Shafiq U, Hamza A, Mirza AM, Baili J, AlHammadi DA, et al. A novel network-level fused deep learning architecture with shallow neural network classifier for gastrointestinal cancer classification from wireless capsule endoscopy images. BMC Med Inform Decis Making. 2025;25:150.

Google Scholar 

Wong MC, Huang J, Chan PS, Choi P, Lao XQ, Chan SM, et al. Global incidence and mortality of gastric cancer, 1980–2018. JAMA Network Open. 2021;4:e2118457–e2118457.

Google Scholar 

F. Sedighipour Chafjiri, "Anatomical Classification of the Gastrointestinal tract Using Ensemble Transfer Learning," University of Saskatchewan, 2023.

Rawla P, Barsouk A. Epidemiology of gastric cancer: global trends, risk factors and prevention. Przeglad Gastroenterol. 2019;14:26.

Google Scholar 

Melson JE, Imperiale TF, Itzkowitz SH, Llor X, Kochman ML, Grady WM, et al. AGA White Paper: Roadmap for the Future of Colorectal Cancer Screening in the United States. Clin Gastroenterol Hepatol. 2020;18:2667–78.

Google Scholar 

Rao M, Zhu Y, Qi L, Hu F, Gao P. Circular RNA profiling in plasma exosomes from patients with gastric cancer. Oncol Lett. 2020;20:2199–208.

Google Scholar 

Lian D, Amin B, Du D, Yan W. Enhanced expression of the long non-coding RNA SNHG16 contributes to gastric cancer progression and metastasis. Cancer Biomarkers. 2018;21:151–60.

Google Scholar 

Sitarz R, Skierucha M, Mielko J, Offerhaus GJA, Maciejewski R, Polkowski WP. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res. 2018;10:239.

Google Scholar 

E. Tuba, S. Tomic, M. Beko, D. Zivkovic, and M. Tuba, "Bleeding Detection in Wireless Capsule Endoscopy Images Using Texture and Color Features," in 2018 26th Telecommunications Forum (TELFOR), 2018, pp. 1-4.

X. Xing, X. Jia, and M.-H. Meng, "Bleeding Detection in Wireless Capsule Endoscopy Image Video Using Superpixel-Color Histogram and a Subspace KNN Classifier," in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018, pp. 1-4.

Akarsu M, Akarsu C. Evaluation of new technologies in gastrointestinal endoscopy. JSLS J Soc Laparoend Surg. 2018;22:1.

Google Scholar 

Gora MJ, Quénéhervé L, Carruth RW, Lu W, Rosenberg M, Sauk JS, et al. Tethered capsule endomicroscopy for microscopic imaging of the esophagus, stomach, and duodenum without sedation in humans (with video). Gastroint Endoscopy. 2018;88:830–40.

Google Scholar 

Singh P, Arora A, Strand TA, Leffler DA, Catassi C, Green PH, et al. Global prevalence of celiac disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2018;16:823–36.

Google Scholar 

A. Perperidis, K. Dhaliwal, S. McLaughlin, and T. Vercauteren, "Image computing for fibre-bundle endomicroscopy: A review," arXiv preprint arXiv:1809.00604, 2018.

Souaidi M, Abdelouahed AA, El Ansari M. Multi-scale completed local binary patterns for ulcer detection in wireless capsule endoscopy images. Multimedia Tools Appl. 2019;78:13091–108.

Google Scholar 

Scally B, Emberson JR, Spata E, Reith C, Davies K, Halls H, et al. Effects of gastroprotectant drugs for the prevention and treatment of peptic ulcer disease and its complications: a meta-analysis of randomised trials. Lancet Gastroenterol Hepatol. 2018;3:231–41.

Google Scholar 

Jambi HA, Khattab HAE-RH. Potential antioxidant, anti-inflammatory and gastroprotective effect of grape seed extract in indomethacin-induced gastric ulcer in rats. Int J Pharmacol. 2019;15:209–18.

Google Scholar 

Gemilyan M, Hakobyan G, Benejat L, Allushi B, Melik-Nubaryan D, Mangoyan H, et al. Prevalence of Helicobacter pylori infection and antibiotic resistance profile in Armenia. Gut Pathogens. 2019;11:28.

Google Scholar 

Collij V, Imhann F, Vila AV, Fu J, Dijkstra G, Festen EA, et al. SLC39A8 missense variant is associated with Crohn’s disease but does not have a major impact on gut microbiome composition in healthy subjects. PloS One. 2019;14:e0211328.

Google Scholar 

Rimola J, Alfaro I, Fernández-Clotet A, Castro-Poceiro J, Vas D, Rodríguez S, et al. Persistent damage on magnetic resonance enterography in patients with Crohn’s disease in endoscopic remission. Aliment Pharmacol Therapeut. 2018;48:1232–41.

Google Scholar 

Martincorena I, Fowler JC, Wabik A, Lawson AR, Abascal F, Hall MW, et al. Somatic mutant clones colonize the human esophagus with age. Science. 2018;362:911–7.

Google Scholar 

G. search, "List of all GI tract endoscopy images " 2020.

Gupta S, Li D, El Serag HB, Davitkov P, Altayar O, Sultan S, et al. AGA clinical practice guidelines on management of gastric intestinal metaplasia. Gastroenterology. 2020;158:693–702.

Google Scholar 

A. M. Boyce, P. Florenzano, L. F. de Castro, and M. T. Collins, "Fibrous dysplasia/mccune-albright syndrome," in GeneReviews®[Internet], ed: University of Washington, Seattle, 2019.

Sen S, Jain S, Venkataramani S, Raghunathan A. SparCE: Sparsity Aware General-Purpose Core Extensions to Accelerate Deep Neural Networks. IEEE Trans Comp. 2018;68:912–25.

Google Scholar 

Rioux JE, Devlin MC, Gelfand MM, Steinberg WM, Hepburn DS. 17β-estradiol vaginal tablet versus conjugated equine estrogen vaginal cream to relieve menopausal atrophic vaginitis. Menopause. 2018;25:1208–13.

Google Scholar 

Kadry S, Alhaisoni M, Nam Y, Zhang Y, Rajinikanth V, et al. Computer-aided gastrointestinal diseases analysis from wireless capsule endoscopy: A framework of best features selection. IEEE Access. 2020;8:132850–9.

Google Scholar 

K. Pogorelov, "DeepEIR: A Holistic Medical Multimedia System for Gastrointestinal Tract Disease Detection and Localization," 2019.

M. Ramzan, M. Raza, M. Sharif, and Y. Nam, "Gastrointestinal tract infections classification using deep learning," 2021.

Rondonotti E, Spada C, Adler S, May A, Despott EJ, Koulaouzidis A, et al. Small-bowel capsule endoscopy and device-assisted enteroscopy for diagnosis and treatment of small-bowel disorders: European Society of Gastrointestinal Endoscopy (ESGE) technical review. Endoscopy. 2018;50:423–46.

Google Scholar 

J. Friedlander, J. Prager, E. Deboer, and R. Deterding, "Multi-use scope," ed: Google Patents, 2018.

O. Azeroual, G. Saake, and M. Abuosba, "Data quality measures and data cleansing for research information systems," arXiv preprint arXiv:1901.06208, 2019.

B. M. C. Staff, "Biopsy: Types of biopsy procedures used to diagnose cancer," 2020.

Sivakumar P, Kumar BM. A novel method to detect bleeding frame and region in wireless capsule endoscopy video. Cluster Comp. 2018;1:1–7.

Google Scholar 

Ozawa T, Ishihara S, Fujishiro M, Saito H, Kumagai Y, Shichijo S, et al. Novel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitis. Gastroint Endoscopy. 2019;89:416–21.

Google Scholar 

Barakat MT, Girotra M, Huang RJ, Banerjee S. Scoping the scope: endoscopic evaluation of endoscope working channels with a new high-resolution inspection endoscope (with video). Gastroint Endoscopy. 2018;88:601–11.

Google Scholar 

Nguyen TH, Ahsen OO, Liang K, Zhang J, Mashimo H, Fujimoto JG. Correction of circumferential and longitudinal motion distortion in high-speed catheter/endoscope-based optical coherence tomography. Biomed Opt Exp. 2021;12:226–46.

Google Scholar 

Di Maio P, Iocca O, De Virgilio A, Giudice M, Pellini R, D’Ascanio L, et al. Narrow band imaging in head and neck unknown primary carcinoma: A systematic review and meta-analysis. Laryngos. 2020;130:1692–700.

Google Scholar 

Carballal S, Maisterra S, López-Serrano A, Gimeno-García AZ, Vera MI, Marín-Garbriel JC, et al. Real-life chromoendoscopy for neoplasia detection and characterisation in long-standing IBD. Gut. 2018;67:70–8.

Google Scholar 

Feuerstein JD, Rakowsky S, Sattler L, Yadav A, Foromera J, Grossberg L, et al. Meta-analysis of dye-based chromoendoscopy compared with standard-and high-definition white-light endoscopy in patients with inflammatory bowel disease at increased risk of colon cancer. Gastroint Endoscopy. 2019;90:186–95.

Google Scholar 

Iacucci M, Kaplan GG, Panaccione R, Akinola O, Lethebe BC, Lowerison M, et al. A randomized trial comparing high definition colonoscopy alone with high definition dye spraying and electronic virtual chromoendoscopy for detection of colonic neoplastic lesions during IBD surveillance colonoscopy. Am J Gastroenterol. 2018;113:225.

Google Scholar 

Vleugels JL, Rutter MD, Ragunath K, Rees CJ, Ponsioen CY, Lahiff C, et al. Diagnostic Accuracy of Endoscopic Trimodal Imaging and Chromoendoscopy for Lesion Characterization in Ulcerative Colitis. J Crohn’s Colitis. 2018;12:1438–47.

Google Scholar 

Tsuji S, Takeda Y, Tsuji K, Yoshida N, Takemura K, Yamada S, et al. Clinical outcomes of the “resect and discard” strategy using magnifying narrow-band imaging for small (< 10 mm) colorectal polyps. Endoscopy Int Open. 2018;6:E1382–9.

Google Scholar 

Tabatabaei N, Kang D, Kim M, Wu T, Grant CN, Rosenberg M, et al. Clinical translation of tethered confocal microscopy capsule for unsedated diagnosis of eosinophilic esophagitis. Sci Reports. 2018;8:2631.

Google Scholar 

G. search, "All endoscopy Appratus," 2020.

Pogorelov K, Suman S, Azmadi Hussin F, Saeed Malik A, Ostroukhova O, Riegler M, et al. Bleeding detection in wireless capsule endoscopy videos—Color versus texture features. J Appl Clin Med Phys. 2019;20:141–54.

Google Scholar 

Figueiredo IN, Leal C, Pinto L, Figueiredo PN, Tsai R. Hybrid multiscale affine and elastic image registration approach towards wireless capsule endoscope localization. Biomed Signal Proc Control. 2018;39:486–502.

Google Scholar 

H. Gammulle, S. Denman, S. Sridharan, and C. Fookes, "Two-Stream Deep Feature Modelling for Automated Video Endoscopy Data Analysis," in International Conference on Medical Image Computing and Computer-Assisted Intervention, 2020, pp. 742-751.

V. Thambawita, D. Jha, H. L. Hammer, H. D. Johansen, D. Johansen, P. Halvorsen, et al., "An Extensive Study on Cross-Dataset Bias and Evaluation Metrics Interpretation for Machine Learning applied to Gastrointestinal Tract Abnormality Classification," arXiv preprint arXiv:2005.03912, 2020.

Li T, Long L. Imaging Examination and Quantitative Detection and Analysis of Gastrointestinal Diseases Based on Data Mining Technology. J Med Syst. 2020;44:31.

Google Scholar 

Khan MA, Khan MA, Ahmed F, Mittal M, Goyal LM, Hemanth DJ, et al. Gastrointestinal diseases segmentation and classification based on duo-deep architectures. Pattern Recogn Lett. 2020;131:193–204.

Google Scholar 

Soffer S, Klang E, Shimon O, Nachmias N, Eliakim R, Ben-Horin S, et al. Deep learning for wireless capsule endoscopy: a systematic review and meta-analysis. Gastroint Endoscopy. 2020;92:831.

Google Scholar 

Struyvenberg MR, De Groof AJ, van der Putten J, van der Sommen F, Baldaque-Silva F, Omae M, et al. A computer-assisted algorithm for narrow-band imaging-based tissue characterization in Barrett’s esophagus. Gastroint Endoscopy. 2021;93:89–98.

Google Scholar 

M. Rashad, S. Nooh, I. Afifi, and M. Abdelfatah, "Effective of modern techniques on content-based medical image retrieval: a survey," ed, 2022.

Obukhova NA, Motyko AA, Pozdeev AA. Two-Stage Method for Polyps Segmentation in Endoscopic Images. In: Computer Vision in Control Systems. 6th ed. Berlin: Springer; 2020. p. 93–106.

Google Scholar 

Shen B. Inflammatory bowel disease–associated bleeding. In: Atlas of Endoscopy Imaging in Inflammatory Bowel Disease. US: Elsevier; 2020. p. 551–9.

Google Scholar 

Kuang Y, Lan T, Peng X, Selasi GE, Liu Q, Zhang J. Unsupervised multi-discriminator generative adversarial network for lung nodule malignancy classification. IEEE Access. 2020;8:77725–34.

Google Scholar 

Majid A, Yasmin M, Rehman A, Yousafzai A, Tariq U. Classification of stomach infections: A paradigm of convolutional neural network along with classical features fusion and selection. Microscopy Res Tech. 2020;83:562–76.

Google Scholar 

Jain S, Seal A, Ojha A, Krejcar O, Bureš J, Tachecí I, et al. Detection of abnormality in wireless capsule endoscopy images using fractal features. Comp Biol Med. 2020;127:104094.

Google Scholar 

Nguyen N-Q, Vo DM, Lee S-W. Contour-Aware Polyp Segmentation in Colonoscopy Images Using Detailed Upsamling Encoder-Decoder Networks. IEEE Access. 2020;8:99495–508.

Google Scholar 

Gruosso M, Capece N, Erra U. Human segmentation in surveillance video with deep learning. Multimedia Tools Appl. 2020;80:1–25.

Google Scholar 

Ali H, Sharif M, Yasmin M, Rehmani MH, Riaz F. A survey of feature extraction and fusion of deep learning for detection of abnormalities in video endoscopy of gastrointestinal-tract. Artif Intell Rev. 2020;53:2635–707.

Google Scholar 

Ono S, Kawada K, Dohi O, Kitamura S, Koike T, Hori S, et al. Linked Color Imaging Focused on Neoplasm Detection in the Upper Gastrointestinal Tract: A Randomized Trial. Ann Internal Med. 2021;174:18–24.

Google Scholar 

P. Sharma, P. Hans, and S. C. Gupta, "Classification Of Plant Leaf Diseases Using Machine Learning And Image Preprocessing Techniques," in 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), 2020, pp. 480-484.

Münzer B, Schoeffmann K, Böszörmenyi L. Content-based processing and analysis of endoscopic images and videos: A survey. Multimedia Tools Appl. 2018;77:1323–62.

Google Scholar 

Muslim HSM, Khan SA, Hussain S, Jamal A, Qasim HSA. A knowledge-based image enhancement and denoising approach. Comput Math Organ Theory. 2019;25:108–21.

Google Scholar 

Khan MW, Sharif M, Yasmin M, Fernandes SL. A new approach of cup to disk ratio based glaucoma detection using fundus images. J Integr Des Proc Sci. 2016;20:77–94.

Google Scholar 

P. Eze, P. Udaya, R. Evans, and D. Liu, "Comparing Yiq and Ycbcr Colour Image Transforms for Semi-Fragile Medical Image Steganography," 2019.

Sarwinda D, Paradisa RH, Bustamam A, Anggia P. Deep learning in image classification using residual network (ResNet) variants for detection of colorectal cancer. Proc Comp Sci. 2021;179:423–31.

Google Scholar 

Sundara Vadivel P, Yuvaraj D, Navaneetha Krishnan S, Mathusudhanan S. An efficient CBIR system based on color histogram, edge, and texture featu

Comments (0)

No login
gif