Glioblastoma at the crossroads: current understanding and future therapeutic horizons

Ostrom, Q. T. et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013-2017. Neuro Oncol. 22, iv1–iv96 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Torp, S. H., Solheim, O. & Skjulsvik, A. J. The WHO 2021 classification of central nervous system tumours: a practical update on what neurosurgeons need to know-a minireview. Acta Neurochir. 164, 2453–2464 (2022).

Article  PubMed  Google Scholar 

Brás, J. P. et al. TERTmonitor-qPCR detection of TERTp mutations in glioma. Genes 14, 1693 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Miller, J. J. Targeting IDH-mutant glioma. Neurotherapeutics 19, 1724–1732 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han, S. et al. IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. Br. J. Cancer 122, 1580–1589 (2020).

Article  PubMed  PubMed Central  Google Scholar 

McClellan, B. L. et al. Impact of epigenetic reprogramming on antitumor immune responses in glioma. J. Clin. Investig. 133, e163450 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, Q., Berglund, A. E. & Etame, A. B. The impact of epigenetic modifications on adaptive resistance evolution in glioblastoma. Int. J. Mol. Sci. 22, 8324 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan, H. et al. The heterogeneous cellular states of glioblastoma stem cells revealed by single cell analysis. Stem Cells 41, 111–125 (2023).

Article  PubMed  Google Scholar 

Guo, X. et al. Neuronal activity promotes glioma progression by inducing proneural-to-mesenchymal transition in glioma stem cells. Cancer Res 84, 372–387 (2024).

Article  CAS  PubMed  Google Scholar 

Singh, S. et al. Unveiling novel avenues in mTOR-targeted therapeutics: advancements in glioblastoma treatment. Int. J. Mol. Sci. 24, 14960 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma, P., Aaroe, A., Liang, J. & Puduvalli, V. K. Tumor microenvironment in glioblastoma: current and emerging concepts. Neurooncol. Adv. 5, vdad009 (2023).

PubMed  PubMed Central  Google Scholar 

Zhang, L., Jiang, Y., Zhang, G. & Wei, S. The diversity and dynamics of tumor-associated macrophages in recurrent glioblastoma. Front. Immunol. 14, 1238233 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh, S., Chen, C. C., Kim, S., Singh, A. & Singh, G. Role of Extracellular vesicle microRNAs and RNA binding proteins on glioblastoma dynamics and therapeutics development. Extracell. Vesicle 4, 100049 (2024).

Article  Google Scholar 

Ratti, M. et al. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: first steps from bench to bedside. Target. Oncol. 15, 261–278 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Uppaluri, K. R. et al. Unlocking the potential of non-coding RNAs in cancer research and therapy. Transl. Oncol. 35, 101730 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakajima, N. et al. BRAF V600E, TERT promoter mutations and CDKN2A/B homozygous deletions are frequent in epithelioid glioblastomas: a histological and molecular analysis focusing on intratumoral heterogeneity. Brain Pathol. 28, 663–673 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Louis, D. N. et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131, 803–820 (2016).

Article  PubMed  Google Scholar 

Louis, D. N. et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 23, 1231–1251 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Phillips, H. S. et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9, 157–173 (2006).

Article  CAS  PubMed  Google Scholar 

Verhaak, R. G. W. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma, A. et al. Angiogenic gene signature derived from subtype specific cell models segregate proneural and mesenchymal glioblastoma. Front. Oncol. 7, 146 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma, H. et al. Specific glioblastoma multiforme prognostic-subtype distinctions based on DNA methylation patterns. Cancer Gene Ther. 27, 702–714 (2020).

Article  CAS  PubMed  Google Scholar 

Molenaar, R. J., Maciejewski, J. P., Wilmink, J. W. & van Noorden, C. J. F. Wild-type and mutated IDH1/2 enzymes and therapy responses. Oncogene 37, 1949–1960 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, H., Ye, D., Guan, K.-L. & Xiong, Y. IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin. Cancer Res. 18, 5562–5571 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohen, A. L., Holmen, S. L. & Colman, H. IDH1 and IDH2 mutations in gliomas. Curr. Neurol. Neurosci. Rep. 13, 345 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Mukasa, A. et al. Significance of IDH mutations varies with tumor histology, grade, and genetics in Japanese glioma patients. Cancer Sci. 103, 587–592 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Juratli, T. A. et al. The prognostic value of IDH mutations and MGMT promoter status in secondary high-grade gliomas. J. Neurooncol. 110, 325–333 (2012).

Article  CAS  PubMed  Google Scholar 

Ramos-Fresnedo, A. et al. The survival outcomes of molecular glioblastoma IDH-wildtype: a multicenter study. J. Neurooncol. 157, 177–185 (2022).

Article  CAS  PubMed  Google Scholar 

Duncan, C. G. et al. A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation. Genome Res 22, 2339–2355 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beiko, J. et al. IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection. Neuro Oncol. 16, 81–91 (2014).

Article  CAS  PubMed 

Comments (0)

No login
gif