The role of innate immunity triggered by HPV infection in promoting cervical lesions

Mantovani A, Garlanda C (2023) Humoral innate immunity and acute-phase proteins. N Engl J Med 388(5):439–452

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cabeza-Cabrerizo M et al (2021) Dendritic cells revisited. Annu Rev Immunol 39:131–166

Article  CAS  PubMed  Google Scholar 

Hagai T et al (2018) Gene expression variability across cells and species shapes innate immunity. Nature 563(7730):197–202

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li D, Wu M (2021) Pattern recognition receptors in health and diseases. Signal Transduct Target Ther 6(1):291

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stögerer T, Stäger S (2020) Innate immune sensing by cells of the adaptive immune system. Front Immunol 11:1081

Article  PubMed  PubMed Central  Google Scholar 

Kong L-Z et al (2023) Understanding nucleic acid sensing and its therapeutic applications. Exp Mol Med 55(11):2320–2331

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kasuga Y et al (2021) Innate immune sensing of coronavirus and viral evasion strategies. Exp Mol Med 53(5):723–736

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16(4):343–353

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burd EM (2003) Human papillomavirus and cervical cancer. Clin Microbiol Rev 16(1):1–17

James CD et al (2020) Activating the DNA damage response and suppressing innate immunity: human papillomaviruses walk the line. Pathogens (Basel, Switzerland) 9(6):467

Lo Cigno I et al (2020) Subversion of host innate immunity by human papillomavirus oncoproteins. Pathogens (Basel, Switzerland) 9(4):292

Vanajothi R et al (2022) HPV-mediated cervical cancer: a systematic review on immunological basis, molecular biology, and immune evasion mechanisms. Curr Drug Targets 23(8):782–801

Article  CAS  PubMed  Google Scholar 

Münger K et al (2004) Mechanisms of human papillomavirus-induced oncogenesis. J Virol 78(21):11451–11460

Article  PubMed  PubMed Central  Google Scholar 

Wang JW, Roden RB (2013) L2, the minor capsid protein of papillomavirus. Virology 445(1–2):175–186

Article  CAS  PubMed  Google Scholar 

Kurvinen K et al (2000) Variants of the long control region of human papillomavirus. European Journal of Cancer 36(II):1402–1410

Article  CAS  PubMed  Google Scholar 

Moody CA (2022) Regulation of the innate immune response during the human papillomavirus life cycle. Viruses 14(8):1797

Dai W et al (2022) The association of cervicovaginal Langerhans cells with clearance of human papillomavirus. Front Immunol 13:918190

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kono T, Ozawa H, Laimins L (2024) The roles of DNA damage repair and innate immune surveillance pathways in HPV pathogenesis. Virology 600:110266

Article  CAS  PubMed  Google Scholar 

Taylor JR et al (2018) Heterotetrameric annexin A2/S100A10 (A2t) is essential for oncogenic human papillomavirus trafficking and capsid disassembly, and protects virions from lysosomal degradation. Sci Rep 8(1):11642

Article  PubMed  PubMed Central  Google Scholar 

Mohsen MO et al (2017) Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin Immunol 34:123–132

Article  CAS  PubMed  Google Scholar 

Lo Cigno I et al (2024) High-risk HPV oncoproteins E6 and E7 and their interplay with the innate immune response: Uncovering mechanisms of immune evasion and therapeutic prospects. J Med Virol 96(6):e29685

Article  CAS  PubMed  Google Scholar 

Murayama T et al (2024) Targeting DHX9 triggers tumor-intrinsic interferon response and replication stress in Small Cell Lung Cancer. Cancer Discov 14(3):468-91

Ni H et al (2022) T cell-intrinsic STING signaling promotes regulatory T cell induction and immunosuppression by upregulating FOXP3 transcription in cervical cancer. J Immunother Cancer 10(9):e005151

Nunes RAL et al (2018) Innate immunity and HPV: friends or foes. Clinics (Sao Paulo, Brazil) 73(suppl 1):e549s

Article  PubMed  Google Scholar 

Qi S-Y et al (2024) The HPV viral regulatory mechanism of TLRs and the related treatments for HPV-associated cancers. Front Immunol 15:1407649

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pandey NO et al (2019) Association of TLR4 and TLR9 polymorphisms and haplotypes with cervical cancer susceptibility. Sci Rep 9(1):9729

Article  PubMed  PubMed Central  Google Scholar 

Nath N et al (2020) Polymorphisms and haplotypes of TLR4, TLR9 and CYP1A1 genes possibly interfere with high-risk human papillomavirus infection and cervical cancer susceptibility in Jharkhand, India. International Immunopharmacology 88:106925

Article  CAS  PubMed  Google Scholar 

Ramachandran D, Dörk T (2021) Genomic risk factors for cervical cancer. Cancers 13(20):5137

Daud II et al (2011) Association between toll-like receptor expression and human papillomavirus type 16 persistence. Int J Cancer 128(4):879–886

Article  CAS  PubMed  PubMed Central  Google Scholar 

James CD et al (2020) Human papillomavirus 16 E6 and E7 synergistically repress innate immune gene transcription. MSphere 5(1):e00828-19

Hasan UA et al (2007) TLR9 expression and function is abolished by the cervical cancer-associated human papillomavirus type 16. Journal of Immunology 178(5):3186–3197 ((Baltimore, Md. : 1950))

Article  CAS  Google Scholar 

Pacini L et al (2015) Downregulation of Toll-like receptor 9 expression by beta human papillomavirus 38 and implications for cell cycle control. J Virol 89(22):11396–11405

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chiu Y-H, Macmillan JB, Chen ZJ (2009) RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138(3):576–591

Article  CAS  PubMed  PubMed Central  Google Scholar 

Britto AMA et al (2020) HPV induces changes in innate immune and adhesion molecule markers in cervical mucosa with potential impact on HIV infection. Front Immunol 11:2078

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aggarwal R et al (2015) Characterization of Toll-like receptor transcriptome in squamous cell carcinoma of cervix: a case-control study. Gynecol Oncol 138(2):358–362

Article  CAS  PubMed  Google Scholar 

Lo Cigno I et al (2020) Human papillomavirus E7 oncoprotein subverts host innate immunity via SUV39H1-mediated epigenetic silencing of immune sensor genes. J Virol 94(4):10-128

Chiang C et al (2018) The human papillomavirus E6 oncoprotein targets USP15 and TRIM25 To suppress RIG-I-mediated innate immune signaling. J Virol 92(6):e01737-17

Hu Y et al (2024) cGAS-STING-mediated novel nonclassic antiviral activities. J Med Virol 96(2):e29403

Article  CAS  PubMed  Google Scholar 

Uhlorn BL et al (2020) Vesicular trafficking permits evasion of cGAS/STING surveillance during initial human papillomavirus infection. PLoS Pathog 16(11):e1009028

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif