Mantovani A, Garlanda C (2023) Humoral innate immunity and acute-phase proteins. N Engl J Med 388(5):439–452
Article CAS PubMed PubMed Central Google Scholar
Cabeza-Cabrerizo M et al (2021) Dendritic cells revisited. Annu Rev Immunol 39:131–166
Article CAS PubMed Google Scholar
Hagai T et al (2018) Gene expression variability across cells and species shapes innate immunity. Nature 563(7730):197–202
Article CAS PubMed PubMed Central Google Scholar
Li D, Wu M (2021) Pattern recognition receptors in health and diseases. Signal Transduct Target Ther 6(1):291
Article CAS PubMed PubMed Central Google Scholar
Stögerer T, Stäger S (2020) Innate immune sensing by cells of the adaptive immune system. Front Immunol 11:1081
Article PubMed PubMed Central Google Scholar
Kong L-Z et al (2023) Understanding nucleic acid sensing and its therapeutic applications. Exp Mol Med 55(11):2320–2331
Article CAS PubMed PubMed Central Google Scholar
Kasuga Y et al (2021) Innate immune sensing of coronavirus and viral evasion strategies. Exp Mol Med 53(5):723–736
Article CAS PubMed PubMed Central Google Scholar
Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16(4):343–353
Article CAS PubMed PubMed Central Google Scholar
Burd EM (2003) Human papillomavirus and cervical cancer. Clin Microbiol Rev 16(1):1–17
James CD et al (2020) Activating the DNA damage response and suppressing innate immunity: human papillomaviruses walk the line. Pathogens (Basel, Switzerland) 9(6):467
Lo Cigno I et al (2020) Subversion of host innate immunity by human papillomavirus oncoproteins. Pathogens (Basel, Switzerland) 9(4):292
Vanajothi R et al (2022) HPV-mediated cervical cancer: a systematic review on immunological basis, molecular biology, and immune evasion mechanisms. Curr Drug Targets 23(8):782–801
Article CAS PubMed Google Scholar
Münger K et al (2004) Mechanisms of human papillomavirus-induced oncogenesis. J Virol 78(21):11451–11460
Article PubMed PubMed Central Google Scholar
Wang JW, Roden RB (2013) L2, the minor capsid protein of papillomavirus. Virology 445(1–2):175–186
Article CAS PubMed Google Scholar
Kurvinen K et al (2000) Variants of the long control region of human papillomavirus. European Journal of Cancer 36(II):1402–1410
Article CAS PubMed Google Scholar
Moody CA (2022) Regulation of the innate immune response during the human papillomavirus life cycle. Viruses 14(8):1797
Dai W et al (2022) The association of cervicovaginal Langerhans cells with clearance of human papillomavirus. Front Immunol 13:918190
Article CAS PubMed PubMed Central Google Scholar
Kono T, Ozawa H, Laimins L (2024) The roles of DNA damage repair and innate immune surveillance pathways in HPV pathogenesis. Virology 600:110266
Article CAS PubMed Google Scholar
Taylor JR et al (2018) Heterotetrameric annexin A2/S100A10 (A2t) is essential for oncogenic human papillomavirus trafficking and capsid disassembly, and protects virions from lysosomal degradation. Sci Rep 8(1):11642
Article PubMed PubMed Central Google Scholar
Mohsen MO et al (2017) Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin Immunol 34:123–132
Article CAS PubMed Google Scholar
Lo Cigno I et al (2024) High-risk HPV oncoproteins E6 and E7 and their interplay with the innate immune response: Uncovering mechanisms of immune evasion and therapeutic prospects. J Med Virol 96(6):e29685
Article CAS PubMed Google Scholar
Murayama T et al (2024) Targeting DHX9 triggers tumor-intrinsic interferon response and replication stress in Small Cell Lung Cancer. Cancer Discov 14(3):468-91
Ni H et al (2022) T cell-intrinsic STING signaling promotes regulatory T cell induction and immunosuppression by upregulating FOXP3 transcription in cervical cancer. J Immunother Cancer 10(9):e005151
Nunes RAL et al (2018) Innate immunity and HPV: friends or foes. Clinics (Sao Paulo, Brazil) 73(suppl 1):e549s
Qi S-Y et al (2024) The HPV viral regulatory mechanism of TLRs and the related treatments for HPV-associated cancers. Front Immunol 15:1407649
Article CAS PubMed PubMed Central Google Scholar
Pandey NO et al (2019) Association of TLR4 and TLR9 polymorphisms and haplotypes with cervical cancer susceptibility. Sci Rep 9(1):9729
Article PubMed PubMed Central Google Scholar
Nath N et al (2020) Polymorphisms and haplotypes of TLR4, TLR9 and CYP1A1 genes possibly interfere with high-risk human papillomavirus infection and cervical cancer susceptibility in Jharkhand, India. International Immunopharmacology 88:106925
Article CAS PubMed Google Scholar
Ramachandran D, Dörk T (2021) Genomic risk factors for cervical cancer. Cancers 13(20):5137
Daud II et al (2011) Association between toll-like receptor expression and human papillomavirus type 16 persistence. Int J Cancer 128(4):879–886
Article CAS PubMed PubMed Central Google Scholar
James CD et al (2020) Human papillomavirus 16 E6 and E7 synergistically repress innate immune gene transcription. MSphere 5(1):e00828-19
Hasan UA et al (2007) TLR9 expression and function is abolished by the cervical cancer-associated human papillomavirus type 16. Journal of Immunology 178(5):3186–3197 ((Baltimore, Md. : 1950))
Pacini L et al (2015) Downregulation of Toll-like receptor 9 expression by beta human papillomavirus 38 and implications for cell cycle control. J Virol 89(22):11396–11405
Article CAS PubMed PubMed Central Google Scholar
Chiu Y-H, Macmillan JB, Chen ZJ (2009) RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138(3):576–591
Article CAS PubMed PubMed Central Google Scholar
Britto AMA et al (2020) HPV induces changes in innate immune and adhesion molecule markers in cervical mucosa with potential impact on HIV infection. Front Immunol 11:2078
Article CAS PubMed PubMed Central Google Scholar
Aggarwal R et al (2015) Characterization of Toll-like receptor transcriptome in squamous cell carcinoma of cervix: a case-control study. Gynecol Oncol 138(2):358–362
Article CAS PubMed Google Scholar
Lo Cigno I et al (2020) Human papillomavirus E7 oncoprotein subverts host innate immunity via SUV39H1-mediated epigenetic silencing of immune sensor genes. J Virol 94(4):10-128
Chiang C et al (2018) The human papillomavirus E6 oncoprotein targets USP15 and TRIM25 To suppress RIG-I-mediated innate immune signaling. J Virol 92(6):e01737-17
Hu Y et al (2024) cGAS-STING-mediated novel nonclassic antiviral activities. J Med Virol 96(2):e29403
Article CAS PubMed Google Scholar
Uhlorn BL et al (2020) Vesicular trafficking permits evasion of cGAS/STING surveillance during initial human papillomavirus infection. PLoS Pathog 16(11):e1009028
Comments (0)