A bioactive soluble recombinant mouse LIGHT promotes effective tumor immune cell infiltration delaying tumor growth

Bodmer JL, Schneider P, Tschopp J (2002) The molecular architecture of the TNF superfamily. Trends BiochemSci 27:19–26

Article  CAS  Google Scholar 

Bossen C, Ingold K, Tardivel A, Bodmer JL, Gaide O, Hertig S, Ambrose C, Tschopp J, Schneider P (2006) Interactions of tumor necrosis factor (TNF) and TNF receptor family members in the mouse and human. JBiolChem 281:13964–13971

CAS  Google Scholar 

Granger SW, Ware CF (2001) Turning on LIGHT JClinInvest 108:1741–1742

CAS  Google Scholar 

Yu P, Fu YX (2008) Targeting tumors with LIGHT to generate metastasis-clearing immunity. Cytokine Growth Factor Rev 19:285–294. https://doi.org/10.1016/j.cytogfr.2008.04.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mauri DN, Ebner R, Montgomery RI, Kochel KD, Cheung TC, Yu GL, Ruben S, Murphy M, Eisenberg RJ, Cohen GH et al (1998) LIGHT, a new member of the TNF superfamily, and lymphotoxin alpha are ligands for herpesvirus entry mediator. Immunity 8:21–30

Article  CAS  PubMed  Google Scholar 

Del Rio ML, Fernandez-Renedo C, Chaloin O, Scheu S, Pfeffer K, Shintani Y, Perez-Simon JA, Schneider P, Rodriguez-Barbosa JI (2016) Immunotherapeutic targeting of LIGHT/LTbetaR/HVEM pathway fully recapitulates the reduced cytotoxic phenotype of LIGHT-deficient T cells. mAbs: 1–13

Ware CF, Croft M, Neil GA (2022) Realigning the LIGHT signaling network to control dysregulated inflammation. The Journal of experimental medicine 219. https://doi.org/10.1084/jem.20220236

Del Rio ML, Jones ND, Buhler L, Norris P, Shintani Y, Ware CF, Rodriguez-Barbosa JI (2012) Selective blockade of herpesvirus entry mediator-B and T lymphocyte attenuator pathway ameliorates acute graft-versus-host reaction. JImmunol 188:4885–4896

Article  Google Scholar 

Seo GY, Takahashi D, Wang Q, Mikulski Z, Chen A, Chou TF, Marcovecchio P, McArdle S, Sethi A, Shui JW et al (2022) Epithelial HVEM maintains intraepithelial T cell survival and contributes to host protection. Science immunology 7:eabm6931. https://doi.org/10.1126/sciimmunol.abm6931

Article  PubMed  PubMed Central  Google Scholar 

Androlewicz MJ, Browning JL, Ware CF (1992) Lymphotoxin is expressed as a heteromeric complex with a distinct 33-kDa glycoprotein on the surface of an activated human T cell hybridoma. JBiolChem 267:2542–2547

CAS  Google Scholar 

Giles DA, Zahner S, Krause P, Van Der Gracht E, Riffelmacher T, Morris V, Tumanov A, Kronenberg M (2018) The tumor necrosis factor superfamily members TNFSF14 (LIGHT), lymphotoxin beta and lymphotoxin beta receptor interact to regulate intestinal inflammation. Front Immunol 9:2585. https://doi.org/10.3389/fimmu.2018.02585

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rennert PD, James D, Mackay F, Browning JL, Hochman PS (1998) Lymph node genesis is induced by signaling through the lymphotoxin beta receptor. Immunity 9:71–79

Article  CAS  PubMed  Google Scholar 

van de Pavert SA, Mebius RE (2010) New insights into the development of lymphoid tissues. Nat Rev Immunol 10:664–674. https://doi.org/10.1038/nri2832

Article  CAS  PubMed  Google Scholar 

Shi G, Luo H, Wan X, Salcedo TW, Zhang J, Wu J (2002) Mouse T cells receive costimulatory signals from LIGHT, a TNF family member. Blood 100:3279–3286

Article  CAS  PubMed  Google Scholar 

Murphy TL, Murphy KM (2010) Slow down and survive: enigmatic immunoregulation by BTLA and HVEM. AnnuRevImmunol 28:389–411

CAS  Google Scholar 

Scheu S, Alferink J, Potzel T, Barchet W, Kalinke U, Pfeffer K (2002) Targeted disruption of LIGHT causes defects in costimulatory T cell activation and reveals cooperation with lymphotoxin beta in mesenteric lymph node genesis. JExpMed 195:1613–1624

Article  CAS  Google Scholar 

Del Rio ML, Schneider P, Fernandez-Renedo C, Perez-Simon JA, Rodriguez-Barbosa JI (2013) LIGHT/HVEM/LTbetaR interaction as a target for the modulation of the allogeneic immune response in transplantation. AmJTransplant 13:541–551

Google Scholar 

Yoo KJ, Johannes K, González LE, Patel A, Shuptrine CW, Opheim Z, Lenz K, Campbell K, Nguyen TA, Miriyala J, et al. (2022) LIGHT (TNFSF14) costimulation enhances myeloid cell activation and antitumor immunity in the setting of PD-1/PD-L1 and TIGIT checkpoint blockade. Journal of immunology (Baltimore, Md : 1950). https://doi.org/10.4049/jimmunol.2101175

Steinberg MW, Cheung TC, Ware CF (2011) The signaling networks of the herpesvirus entry mediator (TNFRSF14) in immune regulation. ImmunolRev 244:169–187

CAS  Google Scholar 

Holmes TD, Wilson EB, Black EV, Benest AV, Vaz C, Tan B, Tanavde VM, Cook GP (2014) Licensed human natural killer cells aid dendritic cell maturation via TNFSF14/LIGHT. Proc Natl Acad Sci USA 111:E5688-5696. https://doi.org/10.1073/pnas.1411072112

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morel Y, Truneh A, Sweet RW, Olive D, Costello RT (2001) The TNF superfamily members LIGHT and CD154 (CD40 ligand) costimulate induction of dendritic cell maturation and elicit specific CTL activity. JImmunol 167:2479–2486

Article  CAS  Google Scholar 

Wang Y, Zhu M, Miller M, Fu YX (2009) Immunoregulation by tumor necrosis factor superfamily member LIGHT. ImmunolRev 229:232–243

CAS  Google Scholar 

Ito T, Iwamoto K, Tsuji I, Tsubouchi H, Omae H, Sato T, Ohba H, Kurokawa T, Taniyama Y, Shintani Y (2011) Trimerization of murine TNF ligand family member LIGHT increases the cytotoxic activity against the FM3A mammary carcinoma cell line. ApplMicrobiolBiotechnol 90:1691–1699

CAS  Google Scholar 

Schneider P, Willen L, Smulski CR (2014) Tools and techniques to study ligand-receptor interactions and receptor activation by TNF superfamily members. Methods Enzymol 545:103–125. https://doi.org/10.1016/b978-0-12-801430-1.00005-6

Article  CAS  PubMed  Google Scholar 

Gao X, Huang L (1995) Cationic liposome-mediated gene transfer. Gene Ther 2:710–722

CAS  PubMed  Google Scholar 

Young L, Sung J, Stacey G, Masters JR (2010) Detection of mycoplasma in cell cultures. Nat Protoc 5:929–934. https://doi.org/10.1038/nprot.2010.43

Article  CAS  PubMed  Google Scholar 

Fidler IJ, Kripke ML (1977) Metastasis results from preexisting variant cells within a malignant tumor. Science (New York, NY) 197:893–895. https://doi.org/10.1126/science.887927

Article  CAS  Google Scholar 

Allard B, Allard D, Stagg J (2016) Methods to evaluate the antitumor activity of immune checkpoint inhibitors in preclinical studies. Methods in molecular biology (Clifton, NJ) 1458:159–177. https://doi.org/10.1007/978-1-4939-3801-8_12

Article  CAS  Google Scholar 

Schneider P, Holler N, Bodmer JL, Hahne M, Frei K, Fontana A, Tschopp J (1998) Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med 187:1205–1213. https://doi.org/10.1084/jem.187.8.1205

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 90:3539–3543

Article  CAS  PubMed  PubMed Central  Google Scholar 

Curran MA, Allison JP (2009) Tumor vaccines expressing flt3 ligand synergize with ctla-4 blockade to reject preimplanted tumors. Can Res 69:7747–7755. https://doi.org/10.1158/0008-5472.Can-08-3289

Article  CAS  Google Scholar 

van Elsas A, Hurwitz AA, Allison JP (1999) Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 190:355–366

Article  PubMed  PubMed Central  Google Scholar 

Zhai Y, Guo R, Hsu TL, Yu GL, Ni J, Kwon BS, Jiang GW, Lu J, Tan J, Ugustus M et al (1998) LIGHT, a novel ligand for lymphotoxin beta receptor and TR2/HVEM induces apoptosis and suppresses in vivo tumor formation via gene transfer. JClinInvest 102:1142–1151

CAS  Google Scholar 

Harrop JA, McDonnell PC, Brigham-Burke M, Lyn SD, Minton J, Tan KB, Dede K, Spampanato J, Silverman C, Hensley P et al (1998) Herpesvirus entry mediator ligand (HVEM-L), a novel ligand for HVEM/TR2, stimulates proliferation of T cells and inhibits HT29 cell growth. JBiolChem 273:27548–27556

CAS  Google Scholar 

Zhou Z, Tone Y, Song X, Furuuchi K, Lear JD, Waldmann H, Tone M, Greene MI, Murali R (2008) Structural basis for ligand-mediated mouse GITR activation. Proc Natl Acad Sci USA 105:641–645. https://doi.org/10.1073/pnas.0711206105

Article  PubMed  PubMed Central 

Comments (0)

No login
gif