Selenium and selenoproteins: key regulators of ferroptosis and therapeutic targets in cancer

Manville IA (1939) The selenium problem and its relationship to public health. Am J Public Health Nations Health 29:709–719

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwarz K, Foltz CM (1958) Factor 3 activity of selenium compounds. J Biol Chem 233:245–251

Article  CAS  PubMed  Google Scholar 

Genchi G, Lauria G, Catalano A, Sinicropi MS, Carocci A (2023) Biological activity of selenium and its impact on human health. Int J Mol Sci 24. https://doi.org/10.3390/ijms24032633

Qi Z, Duan A, Ng K (2023) Selenoproteins in health. Molecules 29. https://doi.org/10.3390/molecules29010136

Zhang F, Li X, Wei Y (2023) Selenium and selenoproteins in health. Biomolecules 13. https://doi.org/10.3390/biom13050799

Carlisle AE, Lee N, Matthew-Onabanjo AN, Spears ME, Park SJ, Youkana D, Doshi MB, Peppers A, Li R, Joseph AB et al (2020) Selenium detoxification is required for cancer-cell survival. Nat Metab 2:603–611

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marciel MP, Hoffmann PR (2017) Selenoproteins and metastasis. Adv Cancer Res 136:85–108

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rochette L, Dogon G, Rigal E, Zeller M, Cottin Y, Vergely C (2022) Lipid peroxidation and iron metabolism: two corner stones in the homeostasis control of ferroptosis. Int J Mol Sci 24. https://doi.org/10.3390/ijms24010449

Liang D, Minikes AM, Jiang X (2022) Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell 82:2215–2227

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim JW, Lee JY, Oh M, Lee EW (2023) An integrated view of lipid metabolism in ferroptosis revisited via lipidomic analysis. Exp Mol Med 55:1620–1631

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang R, Kroemer G, Tang D (2024) Lipid-derived radical-trapping antioxidants suppress ferroptosis. Life Metab 3:loae008. https://doi.org/10.1093/lifemeta/loae008

Article  PubMed  PubMed Central  Google Scholar 

Li FJ, Long HZ, Zhou ZW, Luo HY, Xu SG, Gao LC (2022) System X(c) (-)/GSH/GPX4 axis: an important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front Pharmacol 13:910292. https://doi.org/10.3389/fphar.2022.910292

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li W, Liang L, Liu S, Yi H, Zhou Y (2023) FSP1: a key regulator of ferroptosis. Trends Mol Med 29:753–764

Article  CAS  PubMed  Google Scholar 

Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R et al (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575:688–692

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH et al (2019) FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575:693–698

Article  CAS  PubMed  Google Scholar 

Boukalova S, Hubackova S, Milosevic M, Ezrova Z, Neuzil J, Rohlena J (2020) Dihydroorotate dehydrogenase in oxidative phosphorylation and cancer. Biochim Biophys Acta Mol Basis Dis 1866:165759. https://doi.org/10.1016/j.bbadis.2020.165759

Article  CAS  PubMed  Google Scholar 

Lei G, Zhuang L, Gan B (2024) The roles of ferroptosis in cancer: tumor suppression, tumor microenvironment, and therapeutic interventions. Cancer Cell 42:513–534

Article  CAS  PubMed  Google Scholar 

Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E et al (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16:1180–1191

Article  CAS  PubMed  Google Scholar 

Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Porto Freitas F, Seibt T et al (2018) Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172:409-422.e421

Article  CAS  PubMed  Google Scholar 

Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94:739–777

Article  CAS  PubMed  PubMed Central  Google Scholar 

DeAngelo SL, Győrffy B, Koutmos M, Shah YM (2023) Selenoproteins and tRNA-Sec: regulators of cancer redox homeostasis. Trends Cancer 9:1006–1018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng JJ, Yue SY, Fang YH, Liu XL, Wang CH (2021) Mechanisms affecting the biosynthesis and incorporation rate of selenocysteine. Molecules 26. https://doi.org/10.3390/molecules26237120

Alborzinia H, Chen Z, Yildiz U, Freitas FP, Vogel FCE, Varga JP, Batani J, Bartenhagen C, Schmitz W, Büchel G et al (2023) LRP8-mediated selenocysteine uptake is a targetable vulnerability in MYCN-amplified neuroblastoma. EMBO Mol Med 15:e18014. https://doi.org/10.15252/emmm.202318014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shimada BK, Swanson S, Toh P, Seale LA (2022) Metabolism of selenium, selenocysteine, and selenoproteins in ferroptosis in solid tumor cancers. Biomolecules 12. https://doi.org/10.3390/biom12111581

Conrad M, Proneth B (2020) Selenium: tracing another essential element of ferroptotic cell death. Cell Chem Biol 27:409–419

Article  CAS  PubMed  Google Scholar 

Xie M, Sun X, Li P, Shen X, Fang Y (2021) Selenium in cereals: insight into species of the element from total amount. Compr Rev Food Sci Food Saf 20:2914–2940

Article  CAS  PubMed  Google Scholar 

D’Amato R, Regni L, Falcinelli B, Mattioli S, Benincasa P, Dal Bosco A, Pacheco P, Proietti P, Troni E, Santi C et al (2020) Current knowledge on selenium biofortification to improve the nutraceutical profile of food: a comprehensive review. J Agric Food Chem 68:4075–4097

Article  PubMed  PubMed Central  Google Scholar 

Kieliszek M, Błażejak S (2016) Current knowledge on the importance of selenium in food for living organisms: a review. Molecules 21. https://doi.org/10.3390/molecules21050609

Ip C, Lisk DJ (1994) Bioactivity of selenium from Brazil nut for cancer prevention and selenoenzyme maintenance. Nutr Cancer 21:203–212

Article  CAS  PubMed  Google Scholar 

Yang H, Yang X, Ning Z, Kwon SY, Li ML, Tack FMG, Kwon EE, Rinklebe J, Yin R (2022) The beneficial and hazardous effects of selenium on the health of the soil-plant-human system: an overview. J Hazard Mater 422:126876. https://doi.org/10.1016/j.jhazmat.2021.126876

Article  CAS  PubMed  Google Scholar 

Winkel LH, Vriens B, Jones GD, Schneider LS, Pilon-Smits E, Bañuelos GS (2015) Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Nut

Comments (0)

No login
gif