Church FC (2021) Treatment options for motor and Non-Motor symptoms of Parkinson’s disease. Biomolecules 11:612. https://doi.org/10.3390/biom11040612
Article CAS PubMed PubMed Central Google Scholar
Group GBDNDC (2017) Global, regional, and National burden of neurological disorders during 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet Neurol 16(11):877–897. https://doi.org/10.1016/S1474-4422(17)30299-5
Zhu J, Cui Y, Zhang J, Yan R, Su D, Zhao D, Wang A, Feng T (2024) Temporal trends in the prevalence of Parkinson’s disease from 1980 to 2023: a systematic review and meta-analysis. Lancet Healthy Longev 5(7):e464. https://doi.org/10.1016/s2666-7568(24)00094-1
Dong-Chen X, Yong C, Yang X, Chen-Yu S, Li-Hua P (2023) Signaling pathways in Parkinson’s disease: molecular mechanisms and therapeutic interventions. Signal Transduct Target Therapy 8(1):73. https://doi.org/10.1038/s41392-023-01353-3
Foltynie T, Bruno V, Fox S, Kuhn AA, Lindop F, Lees AJ (2024) Medical, surgical, and physical treatments for Parkinson’s disease. Lancet 403:305–324. https://doi.org/10.1016/S0140-6736(23)01429-0
Obeso JA, Olanow CW, Nutt JG (2000) Levodopa motor complications in Parkinson’s disease. Trends Neurosci 23(10 Suppl). https://doi.org/10.1016/s1471-1931(00)00031-8
Poletti M, Frosini D, Fau - Pagni C, Pagni C, Fau - Baldacci F, Baldacci F, Fau - Nicoletti V, Nicoletti V, Fau - Tognoni G, Tognoni G, Fau - Lucetti C, Lucetti C Fau - Del Dotto P, Del Dotto P Fau - Ceravolo R, Ceravolo R, Fau - Bonuccelli U, Bonuccelli U (2012) Mild cognitive impairment and cognitive-motor relationships in newly diagnosed drug-naive patients with Parkinson’s disease. Journal of neurology, neurosurgery, and psychiatry 83(6):601–606.https://doi.org/10.1136/jnnp-2011-301874
Schapira AHV, Chaudhuri KR, Jenner P (2017) Non-motor features of Parkinson disease. Nat Rev Neurosci 18(7):435–450. https://doi.org/10.1038/nrn.2017.62
Article CAS PubMed Google Scholar
Claudino Dos Santos JC, Lima MPP, Brito GAC, Viana GSB (2023) Role of enteric glia and microbiota-gut-brain axis in Parkinson disease pathogenesis. Ageing Res Rev 84:101812. https://doi.org/10.1016/j.arr.2022.101812
Article CAS PubMed Google Scholar
Tolosa E, Garrido A, Scholz SW, Poewe W (2021) Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol 20(5):385–397. https://doi.org/10.1016/S1474-4422(21)00030-2
Article CAS PubMed PubMed Central Google Scholar
Choi ML, Chappard A, Singh BP, Maclachlan C, Rodrigues M, Fedotova EI, Berezhnov AV, De S, Peddie CJ, Athauda D, Virdi GS, Zhang W, Evans JR, Wernick AI, Zanjani ZS, Angelova PR, Esteras N, Vinokurov AY, Morris K, Jeacock K, Tosatto L, Little D, Gissen P, Clarke DJ, Kunath T, Collinson L, Klenerman D, Abramov AY, Horrocks MH, Gandhi S (2022) Pathological structural conversion of alpha-synuclein at the mitochondria induces neuronal toxicity. Nat Neurosci 25(9):1134–1148. https://doi.org/10.1038/s41593-022-01140-3
Article CAS PubMed PubMed Central Google Scholar
González-Rodríguez PA-O, Zampese EA-O, Stout KA, Guzman JN, Ilijic E, Yang BA-O, Tkatch T, Stavarache MA, Wokosin DL, Gao LA-O, Kaplitt MG, López-Barneo J, Schumacker PA-O, Surmeier DA-O (2021) Disruption of mitochondrial complex I induces progressive parkinsonism. Nature 599(7886):650–656. https://doi.org/10.1038/s41586-021-04059-0
Article CAS PubMed PubMed Central Google Scholar
Armstrong MJ, Okun MS (2020) Diagnosis and treatment of Parkinson disease: A review. JAMA 323(6):548–560. https://doi.org/10.1001/jama.2019.22360
Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet (London England) 386:896–912. https://doi.org/10.1016/S0140-6736(14)61393-3
Article CAS PubMed Google Scholar
Eldeeb MA, Thomas RA, Ragheb MA, Fallahi A, Fon EA (2022) Mitochondrial quality control in health and in Parkinson’s disease. Physiol Rev 102(4):1721–1755. https://doi.org/10.1152/physrev.00041.2021
Article CAS PubMed Google Scholar
Payne T, Burgess T, Bradley S, Roscoe S, Sassani M, Dunning MJ, Hernandez D, Scholz S, McNeill A, Taylor R, Su L, Wilkinson I, Jenkins T, Mortiboys H, Bandmann O (2024) Multimodal assessment of mitochondrial function in Parkinson’s disease. Brain 147:267–280. https://doi.org/10.1093/brain/awad364
Field CS, Baixauli F, Kyle RL, Puleston DJ, Cameron AM, Sanin DE, Hippen KL, Loschi M, Thangavelu G, Corrado M, Edwards-Hicks J, Grzes KM, Pearce EJ, Blazar BR, Pearce EL (2020) Mitochondrial integrity regulated by lipid metabolism is a Cell-Intrinsic checkpoint for Treg suppressive function. Cell Metabol 31(2):422–437. https://doi.org/10.1016/j.cmet.2019.11.021
Lee GS, Pan Y, Scanlon MJ, Porter CJH, Nicolazzo JA (2018) Fatty Acid-Binding protein 5 mediates the uptake of fatty acids, but not drugs, into human brain endothelial cells. J Pharm Sci 107(4):1185–1193. https://doi.org/10.1016/j.xphs.2017.11.024
Article CAS PubMed Google Scholar
Xu B, Chen L, Zhan Y, Marquez KNS, Zhuo L, Qi S, Zhu J, He Y, Chen X, Zhang H, Shen Y, Chen G, Gu J, Guo Y, Liu S, Xie T (2022) The biological functions and regulatory mechanisms of fatty acid binding protein 5 in various diseases. Front Cell Dev Biology. https://doi.org/10.3389/fcell.2022.857919
Liu JW, Almaguel FG, Bu L, De Leon DD, De Leon M (2008) Expression of E-FABP in PC12 cells increases neurite extension during differentiation: involvement of n-3 and n-6 fatty acids. J Neurochem 106:2015–2029. https://doi.org/10.1111/j.1471-4159.2008.05507.x
Article CAS PubMed PubMed Central Google Scholar
Liu JW, Montero M, Bu L, De Leon M (2015) Epidermal fatty acid-binding protein protects nerve growth factor-differentiated PC12 cells from lipotoxic injury. J Neurochem 132:85–98. https://doi.org/10.1111/jnc.12934
Article CAS PubMed Google Scholar
Yu S, Levi L, Siegel R, Noy N (2012) Retinoic acid induces neurogenesis by activating both retinoic acid receptors (RARs) and peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta). J Biol Chem 287(50):42195–42205. https://doi.org/10.1074/jbc.M112.410381
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Sun Y, Rao E, Yan F, Li Q, Zhang Y, Silverstein KA, Liu S, Sauter E, Cleary MP, Li B (2014) Fatty acid-binding protein E-FABP restricts tumor growth by promoting IFN-beta responses in tumor-associated macrophages. Cancer Res 74(11):2998. https://doi.org/10.1158/0008-5472.CAN-13-2689
Soto-Avellaneda A, Oxford AE, Halla F, Vasquez P, Oe E, Pugel AD, Schoenfeld AM, Tillman MC, Cuevas A, Ortlund EA, Morrison BE (2024) FABP5-binding lipids regulate autophagy in differentiated SH-SY5Y cells. PLoS ONE 19(6):e0300168. https://doi.org/10.1371/journal.pone.0300168
Article CAS PubMed PubMed Central Google Scholar
Huang X, Zhen J, Dong S, Zhang H, Van Halm-Lutterodt N, Yuan L (2019) DHA and vitamin E antagonized the Abeta(25–35)-mediated neuron oxidative damage through activation of Nrf2 signaling pathways and regulation of CD36, SRB1 and FABP5 expression in PC12 cells. Food Funct 10(2):1049–1061. https://doi.org/10.1039/c8fo01713a
Article CAS PubMed Google Scholar
Pan Y, Short JL, Choy KH, Zeng AX, Marriott PJ, Owada Y, Scanlon MJ, Porter CJ, Nicolazzo JA (2016) Fatty acid-Binding protein 5 at the Blood-Brain barrier regulates endogenous brain docosahexaenoic acid levels and cognitive function. J Neuroscience: Official J Soc Neurosci 36(46):11755–11767. https://doi.org/10.1523/JNEUROSCI.1583-16.2016
Pan Y, Tian T, Park CO, Lofftus SY, Mei S, Liu X, Luo C, O’Malley JT, Gehad A, Teague JE, Divito SJ, Fuhlbrigge R, Puigserver P, Krueger JG, Hotamisligil GS, Clark RA, Kupper TS (2017) Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature 543:252–256. https://doi.org/10.1038/nature21379
Article CAS PubMed PubMed Central Google Scholar
Duran AM, Zamora F, De Leon M (2024) Dietary docosahexaenoic Acid-Rich supplementation decreases neurotoxic lipid mediators in participants with type 2 diabetes and neuropathic pain. Nutrients 16:4025. https://doi.org/10.3390/nu16234025
Comments (0)