Pan JJ, Qi L, Wang L (2024) M2 microglial extracellular vesicles attenuated Blood-brain barrier disruption via MiR-23a-5p in cerebral ischemic mice. Aging Dis 15(3):1344–1356. https://doi.org/10.14336/ad.2023.0714
Article PubMed PubMed Central Google Scholar
Goel D, Shangari S, Mittal M, Bhat A (2024) Endogenous defense mechanism-based neuroprotection in large-vessel acute ischemic stroke: A hope for future. Brain Circ 10(1):51–59. https://doi.org/10.4103/bc.bc_56_23
Article PubMed PubMed Central Google Scholar
Fan JY, Yi T, Sze-To CM (2014) A systematic review of the botanical, phytochemical and Pharmacological profile of Dracaena Cochinchinensis, a plant source of the ethnomedicine Dragon’s blood. Molecules 19(7):10650–10669. https://doi.org/10.3390/molecules190710650
Article CAS PubMed PubMed Central Google Scholar
Xin N, Li YJ, Li X (2012) Dragon’s blood May have radioprotective effects in radiation-induced rat brain injury. Radiat Res 178(1):75–85. https://doi.org/10.1667/rr2739.1
Article CAS PubMed Google Scholar
Ran Y, Xu B, Wang R (2016) Dragon’s blood extracts reduce radiation-induced peripheral blood injury and protects human megakaryocyte cells from GM-CSF withdraw-induced apoptosis. Phys Med 32(1):84–93. https://doi.org/10.1016/j.ejmp.2015.09.010
Khan MM, Badruddeen, Ahmad U, Akhtar J, Khan MI, Khan MF (2021) Cerebroprotective effect of pterostilbene against global cerebral ischemia in rats. Heliyon 7(5):e07083. https://doi.org/10.1016/j.heliyon.2021.e07083
Article CAS PubMed PubMed Central Google Scholar
Jiang M, Su X, Liu J, Zheng C, Li X (2020) Systems Pharmacology-Dissection of the molecular mechanisms of Dragon’s blood in improving ischemic stroke prognosis. Evid Based Complement Alternat Med 2020:4858201. https://doi.org/10.1155/2020/4858201
Article PubMed PubMed Central Google Scholar
Pan B, Sun J, Liu Z (2021) Longxuetongluo capsule protects against cerebral ischemia/reperfusion injury through Endoplasmic reticulum stress and MAPK-mediated mechanisms. 33:215–225. https://doi.org/10.1016/j.jare.2021.01.016
Liu X, Nie L, Zhang Y (2023) Actin cytoskeleton vulnerability to disulfide stress mediates Disulfidptosis. Nat Cell Biol 25(3):404–414. https://doi.org/10.1038/s41556-023-01091-2
Article CAS PubMed PubMed Central Google Scholar
Shah K, Rossie S (2018) Tale of the good and the bad Cdk5: remodeling of the actin cytoskeleton in the brain. Mol Neurobiol 55(4):3426–3438. https://doi.org/10.1007/s12035-017-0525-3
Article CAS PubMed Google Scholar
Machesky LM (2023) Deadly actin collapse by Disulfidptosis. Nat Cell Biol 25(3):375–376. https://doi.org/10.1038/s41556-023-01100-4
Article CAS PubMed Google Scholar
Lai CH, Kuo KH, Leo JM (2005) Critical role of actin in modulating BBB permeability. Brain Res Brain Res Rev 50(1):7–13. https://doi.org/10.1016/j.brainresrev.2005.03.007
Article CAS PubMed Google Scholar
Wang Y, Jin H, Wang W, Wang F, Zhao H (2019) Myosin1f-mediated neutrophil migration contributes to acute neuroinflammation and brain injury after stroke in mice. J Neuroinflammation 16(1):77. https://doi.org/10.1186/s12974-019-1465-9
Article PubMed PubMed Central Google Scholar
Liu L, Wang R, Gao W (2025) Corrigendum to drug pairs of Huangqi and Danggui alleviates pyroptosis by promoting autophagy activity via AMPK/mTOR signaling pathway in middle-cerebral artery occlusion/reperfusion in rats. J Ethnopharmacol 338(Pt 1):119140. https://doi.org/10.1016/j.jep.2024.119140
Li Q, Fadoul G, Ikonomovic M, Yang T, Zhang F (2022) Sulforaphane promotes white matter plasticity and improves long-term neurological outcomes after ischemic stroke via the Nrf2 pathway. Free Radic Biol Med 193(Pt 1):292–303. https://doi.org/10.1016/j.freeradbiomed.2022.10.001
Article CAS PubMed Google Scholar
Guan Y, Gu Y, Shao H (2023) Intermittent hypoxia protects against hypoxic-ischemic brain damage by inducing functional angiogenesis. J Cereb Blood Flow Metab 43(10):1656–1671. https://doi.org/10.1177/0271678x231185507
Article CAS PubMed PubMed Central Google Scholar
Ran Y, Wang R, Gao Q (2014) Dragon’s blood and its extracts attenuate radiation-induced oxidative stress in mice. J Radiat Res 55(4):699–706. https://doi.org/10.1093/jrr/rru013
Article CAS PubMed PubMed Central Google Scholar
Li C, Zhang Y, Wang Q (2018) Dragon’s blood exerts cardio-protection against myocardial injury through PI3K-AKT-mTOR signaling pathway in acute myocardial infarction mice model. J Ethnopharmacol 227:279–289. https://doi.org/10.1016/j.jep.2018.09.010
Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20(1):84–91. https://doi.org/10.1161/01.str.20.1.84
Article CAS PubMed Google Scholar
Shi X, Bai H, Wang J (2021) Behavioral assessment of sensory, motor, emotion, and cognition in rodent models of intracerebral hemorrhage. Front Neurol 12:667511. https://doi.org/10.3389/fneur.2021.667511
Article PubMed PubMed Central Google Scholar
Li S, Hua X, Zheng M (2021) PLXNA2 knockdown promotes M2 microglia polarization through mTOR/STAT3 signaling to improve functional recovery in rats after cerebral ischemia/reperfusion injury. Exp Neurol 346:113854. https://doi.org/10.1016/j.expneurol.2021.113854
Article CAS PubMed Google Scholar
Zhao H, Sapolsky RM, Steinberg GK (2006) Interrupting reperfusion as a stroke therapy: ischemic postconditioning reduces infarct size after focal ischemia in rats. J Cereb Blood Flow Metab 26(9):1114–1121. https://doi.org/10.1038/sj.jcbfm.9600348
Article CAS PubMed Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628. https://doi.org/10.1038/nmeth.1226
Article CAS PubMed Google Scholar
Liao Y, Smyth GK, Shi W (2014) FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930. https://doi.org/10.1093/bioinformatics/btt656
Article CAS PubMed Google Scholar
Love MI, Huber W, Anders S (2014) Moderated Estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8
Article CAS PubMed PubMed Central Google Scholar
Gu Q, An Y, Xu M (2024) Disulfidptosis, A novel cell death pathway: molecular landscape and therapeutic implications. Aging Dis. https://doi.org/10.14336/ad.2024.0083
Article PubMed PubMed Central Google Scholar
Ye J, Bi X, Deng S (2024) Hypoxanthine is a metabolic biomarker for inducing GSDME-dependent pyroptosis of endothelial cells during ischemic stroke. Theranostics 14(15):6071–6087. https://doi.org/10.7150/thno.100090
Article CAS PubMed PubMed Central Google Scholar
Zhang L, Zhang ZG, Zhang C, Zhang RL, Chopp M (2004) Intravenous administration of a GPIIb/IIIa receptor antagonist extends the therapeutic window of intra-arterial tenecteplase-tissue plasminogen activator in a rat stroke model. Stroke 35(12):2890–2895. https://doi.org/10.1161/01.STR.0000147963.68238.da
Comments (0)