Neuroprotective Effects of Tectoridin in HO-Induced Oxidative Stress and an Amyloid-Infused Rat Model of Alzheimer’s Disease

Hodson R (2018) Alzheimer’s disease. Nature 559(7715):S1. https://doi.org/10.1038/d41586-018-05717-6

Article  CAS  PubMed  Google Scholar 

Kukull WA, Bowen JD (2002) Dementia epidemiology. Med Clin North Am 86(3):573–590. https://doi.org/10.1016/s0025-7125(02)00010-x

Article  PubMed  Google Scholar 

Takizawa C, Thompson PL, van Walsem A, Faure C, Maier WC (2015) Epidemiological and economic burden of Alzheimer’s disease: a systematic literature review of data across Europe and the united States of America. J Alzheimers Dis 43(4):1271–1284. https://doi.org/10.3233/JAD-141134

Article  PubMed  Google Scholar 

Howard R, McShane R, Lindesay J, Ritchie C, Baldwin A, Barber R, Burns A, Dening T, Findlay D, Holmes C, Hughes A, Jacoby R, Jones R, Jones R, McKeith I, Macharouthu A, O’Brien J, Passmore P, Sheehan B, Juszczak E, Katona C, Hills R, Knapp M, Ballard C, Brown R, Banerjee S, Onions C, Griffin M, Adams J, Gray R, Johnson T, Bentham P, Phillips P (2012) Donepezil and memantine for moderate-to-severe Alzheimer’s disease. N Engl J Med 366(10):893–903. https://doi.org/10.1056/NEJMoa1106668

Article  CAS  PubMed  Google Scholar 

Grossberg GT, Manes F, Allegri RF, Gutiérrez-Robledo LM, Gloger S, Xie L, Jia XD, Pejović V, Miller ML, Perhach JL, Graham SM (2013) The safety, tolerability, and efficacy of once-daily memantine (28 mg): a multinational, randomized, double-blind, placebo-controlled trial in patients with moderate-to-severe Alzheimer’s disease taking cholinesterase inhibitors. CNS Drugs 27(6):469–478. https://doi.org/10.1007/s40263-013-0077-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo Y, Chen YH, Cheng ZH, Ou-Yang HN, Luo C, Guo ZL (2016) Tectorigenin inhibits osteosarcoma cell migration through downregulation of matrix metalloproteinases in vitro. Anticancer Drugs 27(6):540–546. https://doi.org/10.1097/CAD.0000000000000362

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shim M, Bae JY, Lee YJ, Ahn MJ (2014) Tectoridin from Maackia amurensis modulates both Estrogen and thyroid receptors. Phytomedicine 21(5):602–606. https://doi.org/10.1016/j.phymed.2013.10.022

Article  CAS  PubMed  Google Scholar 

Wang Q, Yao L, Xu K, Jin H, Chen K, Wang Z, Liu Q, Cao Z, Kenny J, Liu Y, Tickner J, Xu H, Xu J (2019) Madecassoside inhibits Estrogen deficiency-induced osteoporosis by suppressing RANKL-induced osteoclastogenesis. J Cell Mol Med 23(1):380–394. https://doi.org/10.1111/jcmm.13942

Article  CAS  PubMed  Google Scholar 

Ha DT, Binh BT, Thu NT, Bich Thu NT, Thanh Tung PH, Oh WK (2019) Four new compounds isolated from the aerial part of Belamcanda chinensis (L.) and their effect on vascular smooth muscle cell (VSMC) proliferation. Chem Pharm Bull (Tokyo) 67(1):41–46. https://doi.org/10.1248/cpb.c18-00645

Article  CAS  PubMed  Google Scholar 

Chen M, Lu Y, Zhou M, Wang W, Zheng M, Liu C (2023) The protection impact of tectoridin on PC12 cell preventing OGD/R-caused damage through PI3K/AKT signaling channel. Eur J Pharmacol 941:175491. https://doi.org/10.1016/j.ejphar.2023.175491

Article  CAS  PubMed  Google Scholar 

Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing Spatial and related forms of learning and memory. Nat Protoc 1(2):848–858. https://doi.org/10.1038/nprot.2006.116

Article  PubMed  PubMed Central  Google Scholar 

Barnes CA (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol 93(1):74–104. https://doi.org/10.1037/h0077579

Article  CAS  PubMed  Google Scholar 

Roy D, Tomo S, Modi A, Purohit P, Sharma P (2020) Optimising total RNA quality and quantity by phenol-chloroform extraction method from human visceral adipose tissue: A standardisation study. MethodsX 7:101113. https://doi.org/10.1016/j.mex.2020.101113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J, Liu E, Molinuevo JL, Montine T, Phelps C, Rankin KP, Rowe CC, Scheltens P, Siemers E, Snyder HM, Sperling R, Contributors (2018) NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14(4):535–562. https://doi.org/10.1016/j.jalz.2018.02.018

Bereiter-Hahn J (2014) Do we age because we have mitochondria? Protoplasma 251(1):3–23. https://doi.org/10.1007/s00709-013-0515-x

Article  CAS  PubMed  Google Scholar 

Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA (2002) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med 33(4):562–571. https://doi.org/10.1016/s0891-5849(02)00914-0

Article  CAS  PubMed  Google Scholar 

Wang X, Wang W, Li L, Perry G, Lee HG, Zhu X (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta 1842(8):1240–1247. https://doi.org/10.1016/j.bbadis.2013.10.015

Article  CAS  PubMed  Google Scholar 

Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, Merchant M, Markesbery WR, Butterfield DA (2006) Redox proteomics identification of oxidized proteins in Alzheimer’s disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol Aging 27(11):1564–1576. https://doi.org/10.1016/j.neurobiolaging.2005.09.021

Article  CAS  PubMed  Google Scholar 

Butterfield DA, Lauderback CM (2002) Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic Biol Med 32(11):1050–1060. https://doi.org/10.1016/s0891-5849(02)00794-3

Article  CAS  PubMed  Google Scholar 

Ramassamy C, Averill D, Beffert U, Bastianetto S, Theroux L, Lussier-Cacan S, Cohn JS, Christen Y, Davignon J, Quirion R, Poirier J (1999) Oxidative damage and protection by antioxidants in the frontal cortex of Alzheimer’s disease is related to the Apolipoprotein E genotype. Free Radic Biol Med 27(5–6):544–553. https://doi.org/10.1016/s0891-5849(99)00102-1

Article  CAS  PubMed  Google Scholar 

Omar RA, Chyan YJ, Andorn AC, Poeggeler B, Robakis NK, Pappolla MA (1999) Increased expression but reduced activity of antioxidant enzymes in Alzheimer’s disease. J Alzheimers Dis 1(3):139–145. https://doi.org/10.3233/jad-1999-1301

Article  CAS  PubMed  Google Scholar 

Sutherland GT, Chami B, Youssef P, Witting PK (2013) Oxidative stress in Alzheimer’s disease: primary villain or physiological by-product? Redox Rep 18(4):134–141. https://doi.org/10.1179/1351000213Y.0000000052

Article  CAS  PubMed  PubMed Central  Google Scholar 

Misao J, Hayakawa Y, Ohno M, Kato S, Fujiwara T, Fujiwara H (1996) Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation 94(7):1506–1512. https://doi.org/10.1161/01.cir.94.7.1506

Article  CAS  PubMed  Google Scholar 

Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH (2013) Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol 14:32. https://doi.org/10.1186/1471-2121-14-32

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif