Agonism of MT and MT Receptor Mitigates Oxidative Insult, Neuroinflammation, and Cerebral Injury in Cadmium Chloride Treated Animals

Naija A, Yalcin HC (2023) Evaluation of cadmium and mercury on cardiovascular and neurological systems: effects on humans and fish. Toxicol Rep 10:498–508. https://doi.org/10.1016/j.toxrep.2023.04.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aschner M, Skalny AV, Santamaria A, Rocha JB, Mansouri B, Tizabi Y, Madeddu R, Lu R, Lee E, Tinkov AA (2024) Epigenetic mechanisms of Aluminum-Induced neurotoxicity and alzheimer’s disease: A focus on Non-Coding RNAs. Neurochem Res 49(11):2988–3005

Article  CAS  PubMed  Google Scholar 

Górska A, Markiewicz-Gospodarek A, Markiewicz R, Chilimoniuk Z, Borowski B, Trubalski M, Czarnek K (2023) Distribution of iron, copper, zinc and cadmium in glia, their influence on glial cells and relationship with neurodegenerative diseases. Brain Sci 13(6):911. https://doi.org/10.3390/brainsci13060911

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suwazono Y, Kido T, Nakagawa H, Nishijo M, Honda R, Kobayashi E, Dochi M, Nogawa K (2009) Biological half-life of cadmium in the urine of inhabitants after cessation of cadmium exposure. Biomarkers 14:77–81. https://doi.org/10.1080/13547500902730698

Article  CAS  PubMed  Google Scholar 

Tsentsevitsky AN, Petrov AM (2021) Synaptic mechanisms of cadmium neurotoxicity. Neural Regen Res 16(9):1762–1763. https://doi.org/10.4103/1673-5374.306067

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nishimura N, Nishimura H, Ghaffar A, Tohyama C (1992) Localization of Metallothionein in the brain of rat and mouse. J J Histochem Cytochem 40(2):309–315. https://doi.org/10.1177/40.2.1552172

Article  CAS  PubMed  Google Scholar 

Ospondpant D, Phuagkhaopong S, Suknuntha K, Sangpairoj K, Kasemsuk T, Srimaroeng C, Vivithanaporn P (2019) Cadmium induces apoptotic program imbalance and cell cycle inhibitor expression in cultured human astrocytes. Environ Toxicol Pharmacol 65:53–59. https://doi.org/10.1016/j.etap.2018.12.001

Article  CAS  PubMed  Google Scholar 

Lv MW, Zhang C, Ge J, Sun XH, Li JY, Li JL (2023) Resveratrol protects against cadmium-induced cerebrum toxicity through modifications of the cytochrome P450 enzyme system in microsomes. J Sci Food Agric 103(12):5883–5892. https://doi.org/10.1002/jsfa.12668

Article  CAS  PubMed  Google Scholar 

Yan Y, Bian JC, Zhong LX, Zhang Y, Sun Y, Liu ZP (2012) Oxidative stress and apoptotic changes of rat cerebral cortical neurons exposed to cadmium in vitro. Biomed Environ Sci 25:172–181. https://doi.org/10.3967/0895-3988.2012.02.008

Article  CAS  PubMed  Google Scholar 

Mendez-Armenta M, Rios C (2007) Cadmium neurotoxicity. Environ Toxicol Pharmacol 23:350–358. https://doi.org/10.1016/j.etap.2006.11.009

Article  CAS  PubMed  Google Scholar 

Das K, Das P, Dasgupta S, Dey C (1993) Serotonergic-cholinergic neurotransrnitters’ functionin brain during cadmium exposure in proteinrestricted rat. Biol Trace Elem Res 36:119–127. https://doi.org/10.1007/BF02783170

Article  CAS  PubMed  Google Scholar 

Wang B, Du Y (2013) Cadmium and its neurotoxic effects. Oxidative Med Cell Longev 2013(1):898034. https://doi.org/10.1155/2013/898034

Article  CAS  Google Scholar 

Xu B, Chen S, Luo Y, Chen Z, Liu L, Zhou H, Chen W, Shen T, Han X, Chen L, Huang S (2011) Calcium signaling is involved in cadmium-induced neuronal apoptosis via induction of reactive oxygen species and activation of mapk/mtor network. PLoS ONE 6(4):e19052. https://doi.org/10.1371/journal.pone.0019052

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan Y, Jiang CY, Xu H, Sun Y, Hu FF, Bian JC, Liu XZ, Gu JH, Liu ZP (2013) Cadmium-induced apoptosis in primary rat cerebral cortical neurons culture is mediated by a calcium signaling pathway. PLoS ONE 8(5):e64330. https://doi.org/10.1371/journal.pone.0064330

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raj K, Kaur P, Gupta GD, Singh S (2021) Metals associated neurodegeneration in parkinson’s disease: insight to physiological, pathological mechanisms and management. Neurosci Lett 753:135873. https://doi.org/10.1016/j.neulet.2021.135873

Article  CAS  PubMed  Google Scholar 

Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A (2020) The effects of cadmium toxicity. Int J Environ Res Public Health 17(11):3782. https://doi.org/10.3390/ijerph17113782

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shayan M, Mehri S, Razavi BM, Hosseinzadeh H (2023) Minocycline protects PC12 cells against cadmium-induced neurotoxicity by modulating apoptosis. Biol Trace Elem Res 201(4):1946–1954. https://doi.org/10.1007/s12011-022-03305-4

Article  CAS  PubMed  Google Scholar 

Branca JJ, Morucci G, Pacini A (2018) Cadmium-induced neurotoxicity: still much ado. Neural Regen Res 13(11):1879–1882. https://doi.org/10.4103/1673-5374.239434

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsushita MT, Wang H, Abel GM, Xia Z (2023) Inducible and conditional activation of adult neurogenesis rescues cadmium-induced hippocampus-dependent memory deficits in ApoE4-KI mice. Int J Mol Sci 24(11):9118. https://doi.org/10.3390/ijms24119118

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang XB, Zu HB, Zhao YF, Yao K (2022) Agomelatine prevents amyloid plaque deposition, Tau phosphorylation, and neuroinflammation in APP/PS1 mice. Front Aging Neurosci 13:766410. https://doi.org/10.3389/fnagi.2021.766410

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bogaards JJ, Hissink EM, Briggs M, Weaver R, Jochemsen R, Jackson P, Bertrand M, van Bladeren PJ (2000) Prediction of interindividual variation in drug plasma levels in vivo from individual enzyme kinetic data and physiologically based Pharmacokinetic modeling. Eur J Pharm Sci 12(2):117–124. https://doi.org/10.1016/s0928-0987(00)00146-9

Article  CAS  PubMed  Google Scholar 

Kennedy SH, Eisfeld BS (2007) Agomelatine and its therapeutic potential in the depressed patient. Neuropsychiatr Dis Treat 3:423–428

CAS  PubMed  PubMed Central  Google Scholar 

Manikandan S (2010) Agomelatine: A novel melatonergic antidepressant. J Pharmacol Pharmacother 1(2):122–123. https://doi.org/10.4103/0976-500x.72369

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar H, Sharma BM, Sharma B (2015) Benefits of agomelatine in behavioral, neurochemical and blood brain barrier alterations in prenatal valproic acid induced autism spectrum disorder. Neurochem Int 91:34–45. https://doi.org/10.1016/j.neuint.2015.10.007

Article  CAS  PubMed  Google Scholar 

Singh P, Gupta S, Sharma B (2015) Melatonin receptor and KATP channel modulation in experimental vascular dementia. Physiol Behav 142:66–78. https://doi.org/10.1016/j.physbeh.2015.02.009

Article  CAS  PubMed  Google Scholar 

Lan T, Wu Y, Zhang Y, Li S, Zhu Z, Wang L, Mao X, Li Y, Fan C, Wang W, Yu SY (2022) Agomelatine rescues lipopolysaccharide-induced neural injury and depression-like behaviors via suppression of the Gαi-2-PKA-ASK1 signaling pathway. J Neuroinflammation 19(1):117. https://doi.org/10.1186/s12974-022-02479-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cankara FN, Günaydın C, Çelik ZB, Şahin Y, Pekgöz Ş, Erzurumlu Y, Gül

Comments (0)

No login
gif