Naija A, Yalcin HC (2023) Evaluation of cadmium and mercury on cardiovascular and neurological systems: effects on humans and fish. Toxicol Rep 10:498–508. https://doi.org/10.1016/j.toxrep.2023.04.009
Article CAS PubMed PubMed Central Google Scholar
Aschner M, Skalny AV, Santamaria A, Rocha JB, Mansouri B, Tizabi Y, Madeddu R, Lu R, Lee E, Tinkov AA (2024) Epigenetic mechanisms of Aluminum-Induced neurotoxicity and alzheimer’s disease: A focus on Non-Coding RNAs. Neurochem Res 49(11):2988–3005
Article CAS PubMed Google Scholar
Górska A, Markiewicz-Gospodarek A, Markiewicz R, Chilimoniuk Z, Borowski B, Trubalski M, Czarnek K (2023) Distribution of iron, copper, zinc and cadmium in glia, their influence on glial cells and relationship with neurodegenerative diseases. Brain Sci 13(6):911. https://doi.org/10.3390/brainsci13060911
Article CAS PubMed PubMed Central Google Scholar
Suwazono Y, Kido T, Nakagawa H, Nishijo M, Honda R, Kobayashi E, Dochi M, Nogawa K (2009) Biological half-life of cadmium in the urine of inhabitants after cessation of cadmium exposure. Biomarkers 14:77–81. https://doi.org/10.1080/13547500902730698
Article CAS PubMed Google Scholar
Tsentsevitsky AN, Petrov AM (2021) Synaptic mechanisms of cadmium neurotoxicity. Neural Regen Res 16(9):1762–1763. https://doi.org/10.4103/1673-5374.306067
Article CAS PubMed PubMed Central Google Scholar
Nishimura N, Nishimura H, Ghaffar A, Tohyama C (1992) Localization of Metallothionein in the brain of rat and mouse. J J Histochem Cytochem 40(2):309–315. https://doi.org/10.1177/40.2.1552172
Article CAS PubMed Google Scholar
Ospondpant D, Phuagkhaopong S, Suknuntha K, Sangpairoj K, Kasemsuk T, Srimaroeng C, Vivithanaporn P (2019) Cadmium induces apoptotic program imbalance and cell cycle inhibitor expression in cultured human astrocytes. Environ Toxicol Pharmacol 65:53–59. https://doi.org/10.1016/j.etap.2018.12.001
Article CAS PubMed Google Scholar
Lv MW, Zhang C, Ge J, Sun XH, Li JY, Li JL (2023) Resveratrol protects against cadmium-induced cerebrum toxicity through modifications of the cytochrome P450 enzyme system in microsomes. J Sci Food Agric 103(12):5883–5892. https://doi.org/10.1002/jsfa.12668
Article CAS PubMed Google Scholar
Yan Y, Bian JC, Zhong LX, Zhang Y, Sun Y, Liu ZP (2012) Oxidative stress and apoptotic changes of rat cerebral cortical neurons exposed to cadmium in vitro. Biomed Environ Sci 25:172–181. https://doi.org/10.3967/0895-3988.2012.02.008
Article CAS PubMed Google Scholar
Mendez-Armenta M, Rios C (2007) Cadmium neurotoxicity. Environ Toxicol Pharmacol 23:350–358. https://doi.org/10.1016/j.etap.2006.11.009
Article CAS PubMed Google Scholar
Das K, Das P, Dasgupta S, Dey C (1993) Serotonergic-cholinergic neurotransrnitters’ functionin brain during cadmium exposure in proteinrestricted rat. Biol Trace Elem Res 36:119–127. https://doi.org/10.1007/BF02783170
Article CAS PubMed Google Scholar
Wang B, Du Y (2013) Cadmium and its neurotoxic effects. Oxidative Med Cell Longev 2013(1):898034. https://doi.org/10.1155/2013/898034
Xu B, Chen S, Luo Y, Chen Z, Liu L, Zhou H, Chen W, Shen T, Han X, Chen L, Huang S (2011) Calcium signaling is involved in cadmium-induced neuronal apoptosis via induction of reactive oxygen species and activation of mapk/mtor network. PLoS ONE 6(4):e19052. https://doi.org/10.1371/journal.pone.0019052
Article CAS PubMed PubMed Central Google Scholar
Yuan Y, Jiang CY, Xu H, Sun Y, Hu FF, Bian JC, Liu XZ, Gu JH, Liu ZP (2013) Cadmium-induced apoptosis in primary rat cerebral cortical neurons culture is mediated by a calcium signaling pathway. PLoS ONE 8(5):e64330. https://doi.org/10.1371/journal.pone.0064330
Article CAS PubMed PubMed Central Google Scholar
Raj K, Kaur P, Gupta GD, Singh S (2021) Metals associated neurodegeneration in parkinson’s disease: insight to physiological, pathological mechanisms and management. Neurosci Lett 753:135873. https://doi.org/10.1016/j.neulet.2021.135873
Article CAS PubMed Google Scholar
Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A (2020) The effects of cadmium toxicity. Int J Environ Res Public Health 17(11):3782. https://doi.org/10.3390/ijerph17113782
Article CAS PubMed PubMed Central Google Scholar
Shayan M, Mehri S, Razavi BM, Hosseinzadeh H (2023) Minocycline protects PC12 cells against cadmium-induced neurotoxicity by modulating apoptosis. Biol Trace Elem Res 201(4):1946–1954. https://doi.org/10.1007/s12011-022-03305-4
Article CAS PubMed Google Scholar
Branca JJ, Morucci G, Pacini A (2018) Cadmium-induced neurotoxicity: still much ado. Neural Regen Res 13(11):1879–1882. https://doi.org/10.4103/1673-5374.239434
Article CAS PubMed PubMed Central Google Scholar
Matsushita MT, Wang H, Abel GM, Xia Z (2023) Inducible and conditional activation of adult neurogenesis rescues cadmium-induced hippocampus-dependent memory deficits in ApoE4-KI mice. Int J Mol Sci 24(11):9118. https://doi.org/10.3390/ijms24119118
Article CAS PubMed PubMed Central Google Scholar
Yang XB, Zu HB, Zhao YF, Yao K (2022) Agomelatine prevents amyloid plaque deposition, Tau phosphorylation, and neuroinflammation in APP/PS1 mice. Front Aging Neurosci 13:766410. https://doi.org/10.3389/fnagi.2021.766410
Article CAS PubMed PubMed Central Google Scholar
Bogaards JJ, Hissink EM, Briggs M, Weaver R, Jochemsen R, Jackson P, Bertrand M, van Bladeren PJ (2000) Prediction of interindividual variation in drug plasma levels in vivo from individual enzyme kinetic data and physiologically based Pharmacokinetic modeling. Eur J Pharm Sci 12(2):117–124. https://doi.org/10.1016/s0928-0987(00)00146-9
Article CAS PubMed Google Scholar
Kennedy SH, Eisfeld BS (2007) Agomelatine and its therapeutic potential in the depressed patient. Neuropsychiatr Dis Treat 3:423–428
CAS PubMed PubMed Central Google Scholar
Manikandan S (2010) Agomelatine: A novel melatonergic antidepressant. J Pharmacol Pharmacother 1(2):122–123. https://doi.org/10.4103/0976-500x.72369
Article CAS PubMed PubMed Central Google Scholar
Kumar H, Sharma BM, Sharma B (2015) Benefits of agomelatine in behavioral, neurochemical and blood brain barrier alterations in prenatal valproic acid induced autism spectrum disorder. Neurochem Int 91:34–45. https://doi.org/10.1016/j.neuint.2015.10.007
Article CAS PubMed Google Scholar
Singh P, Gupta S, Sharma B (2015) Melatonin receptor and KATP channel modulation in experimental vascular dementia. Physiol Behav 142:66–78. https://doi.org/10.1016/j.physbeh.2015.02.009
Article CAS PubMed Google Scholar
Lan T, Wu Y, Zhang Y, Li S, Zhu Z, Wang L, Mao X, Li Y, Fan C, Wang W, Yu SY (2022) Agomelatine rescues lipopolysaccharide-induced neural injury and depression-like behaviors via suppression of the Gαi-2-PKA-ASK1 signaling pathway. J Neuroinflammation 19(1):117. https://doi.org/10.1186/s12974-022-02479-x
Article CAS PubMed PubMed Central Google Scholar
Cankara FN, Günaydın C, Çelik ZB, Şahin Y, Pekgöz Ş, Erzurumlu Y, Gül
Comments (0)