From RIPK1 to Necroptosis: Pathogenic Mechanisms in Neurodegenerative Diseases

Park W, Wei S, Kim BS, Kim B, Bae SJ, Chae YC, Ryu D, Ha KT (2023) Diversity and complexity of cell death: a historical review. Exp Mol Med 55(8):1573–1594. https://doi.org/10.1038/s12276-023-01078-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. https://doi.org/10.1080/01926230701320337

Article  CAS  PubMed  PubMed Central  Google Scholar 

Newton K, Strasser A, Kayagaki N, Dixit VM (2024) Cell death. Cell 187(2):235–256. https://doi.org/10.1016/j.cell.2023.11.044

Article  CAS  PubMed  Google Scholar 

Hänggi K, Ruffell B (2023) Cell death, therapeutics, and the immune response in cancer. Trends cancer 9(5):381–396. https://doi.org/10.1016/j.trecan.2023.02.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu S, Yao S, Yang H, Liu S, Wang Y (2023) Autophagy: regulator of cell death. Cell Death Dis 14(10):648. https://doi.org/10.1038/s41419-023-06154-8

Article  PubMed  PubMed Central  Google Scholar 

Bertheloot D, Latz E, Franklin BS (2021) Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol 18(5):1106–1121. https://doi.org/10.1038/s41423-020-00630-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan J, Ofengeim D (2024) A guide to cell death pathways. Nat Rev Mol Cell Biol 25(5):379–395. https://doi.org/10.1038/s41580-023-00689-6

Article  CAS  PubMed  Google Scholar 

Dhuriya YK, Sharma D (2018) Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflamm 15(1):199. https://doi.org/10.1186/s12974-018-1235-0

Article  CAS  Google Scholar 

Heemels MT (2016) Neurodegenerative diseases. Nature 539(7628):179. https://doi.org/10.1038/539179a

Article  PubMed  Google Scholar 

Dugger BN, Dickson DW (2017) Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol 9(7). https://doi.org/10.1101/cshperspect.a028035

Vaquer-Alicea J, Diamond MI (2019) Propagation of protein aggregation in neurodegenerative diseases. Annu Rev Biochem 88:785–810. https://doi.org/10.1146/annurev-biochem-061516-045049

Article  CAS  PubMed  Google Scholar 

Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53(2):1181–1194. https://doi.org/10.1007/s12035-014-9070-5

Article  CAS  PubMed  Google Scholar 

Christofferson DE, Li Y, Yuan J (2014) Control of life-or-death decisions by RIP1 kinase. Annu Rev Physiol 76:129–150. https://doi.org/10.1146/annurev-physiol-021113-170259

Article  CAS  PubMed  Google Scholar 

Simpson DS, Gabrielyan A, Feltham R (2021) RIPK1 ubiquitination: evidence, correlations and the undefined. Semin Cell Dev Biol 109:76–85. https://doi.org/10.1016/j.semcdb.2020.08.008

Article  CAS  PubMed  Google Scholar 

Heger K, Wickliffe KE, Ndoja A, Zhang J, Murthy A, Dugger DL, Maltzman A, de Sousa EMF, Hung J, Zeng Y, Verschueren E, Kirkpatrick DS, Vucic D, Lee WP, Roose-Girma M, Newman RJ, Warming S, Hsiao YC, Kőműves LG, Webster JD, Newton K, Dixit VM (2018) OTULIN limits cell death and inflammation by deubiquitinating LUBAC. Nature 559(7712):120–124. https://doi.org/10.1038/s41586-018-0256-2

Article  CAS  PubMed  Google Scholar 

Tu H, Xiong W, Zhang J, Zhao X, Lin X (2022) Tyrosine phosphorylation regulates RIPK1 activity to limit cell death and inflammation. Nat Commun 13(1):6603. https://doi.org/10.1038/s41467-022-34080-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Newton K, Wickliffe KE, Dugger DL, Maltzman A, Roose-Girma M, Dohse M, Kőműves L, Webster JD, Dixit VM (2019) Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature 574(7778):428–431. https://doi.org/10.1038/s41586-019-1548-x

Article  CAS  PubMed  Google Scholar 

Wu Q, Zou C (2022) Microglial dysfunction in neurodegenerative diseases via RIPK1 and ROS. Antioxid (Basel Switzerland) 11(11). https://doi.org/10.3390/antiox11112201

Liang W, Qi W, Geng Y, Wang L, Zhao J, Zhu K, Wu G, Zhang Z, Pan H, Qian L, Yuan J (2021) Necroptosis activates UPR sensors without disrupting their binding with GRP78. Proc Natl Acad Sci USA 118(39). https://doi.org/10.1073/pnas.2110476118

Chen X, Shi C, He M, Xiong S, Xia X (2023) Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduct Target Therapy 8(1):352. https://doi.org/10.1038/s41392-023-01570-w

Article  CAS  Google Scholar 

McComb S, Shutinoski B, Thurston S, Cessford E, Kumar K, Sad S (2014) Cathepsins limit macrophage necroptosis through cleavage of Rip1 kinase. J Immunol (Baltimore Md: 1950) 192(12):5671–5678. https://doi.org/10.4049/jimmunol.1303380

Article  CAS  Google Scholar 

Rape M (2018) Ubiquitylation at the crossroads of development and disease. Nat Rev Mol Cell Biol 19(1):59–70. https://doi.org/10.1038/nrm.2017.83

Article  CAS  PubMed  Google Scholar 

Chen Y, Ren W, Wang Q, He Y, Ma D, Cai Z (2022) The regulation of necroptosis by ubiquitylation. Apoptosis: Int J Program Cell Death 27(9–10):668–684. https://doi.org/10.1007/s10495-022-01755-8

Article  CAS  Google Scholar 

Lork M, Verhelst K, Beyaert R (2017) CYLD, A20 and OTULIN deubiquitinases in NF-κB signaling and cell death: so similar, yet so different. Cell Death Differ 24(7):1172–1183. https://doi.org/10.1038/cdd.2017.46

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schorn F, Werthenbach JP, Hoffmann M, Daoud M, Stachelscheid J, Schiffmann LM, Hildebrandt X, Lyu SI, Peltzer N, Quaas A, Vucic D, Silke J, Pasparakis M, Kashkar H (2023) cIAPs control RIPK1 kinase activity-dependent and -independent cell death and tissue inflammation. EMBO J 42(22):e113614. https://doi.org/10.15252/embj.2023113614

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peltzer N, Darding M, Montinaro A, Draber P, Draberova H, Kupka S, Rieser E, Fisher A, Hutchinson C, Taraborrelli L, Hartwig T, Lafont E, Haas TL, Shimizu Y, Böiers C, Sarr A, Rickard J, Alvarez-Diaz S, Ashworth MT, Beal A, Enver T, Bertin J, Kaiser W, Strasser A, Silke J, Bouillet P, Walczak H (2018) LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature 557(7703):112–117. https://doi.org/10.1038/s41586-018-0064-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lafont E, Kantari-Mimoun C, Draber P, De Miguel D, Hartwig T, Reichert M, Kupka S, Shimizu Y, Taraborrelli L, Spit M, Sprick MR, Walczak H (2017) The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death. EMBO J 36(9):1147–1166. https://doi.org/10.15252/embj.201695699

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamamoto A, Friedlein A, Imai Y, Takahashi R, Kahle PJ, Haass C (2005) Parkin phosphorylation and modulation of its E3 ubiquitin ligase activity. J Biol Chem 280(5):3390–3399. https://doi.org/10.1074/jbc.M407724200

Article  CAS  PubMed  Google Scholar 

Seo J, Lee EW, Sung H, Seong D, Dondelinger Y, Shin J, Jeong M, Lee HK, Kim JH, Han SY, Lee C, Seong JK, Vandenabeele P, Song J (2016) CHIP controls necroptosis through ubiquitylation- and lysosome-dependent degradation of RIPK3. Nat Cell Biol 18(3):291–302. https://doi.org/10.1038/ncb3314

Article  CAS  PubMed  Google Scholar 

Sato Y, Goto E, Shibata Y, Kubota Y, Yamagata A, Goto-Ito S, Kubota K, Inoue J, Takekawa M, Tokunaga F, Fukai S (2015) Structures of CYLD USP with Met1- or Lys63-linke

Comments (0)

No login
gif