Immunoenhancing of the anti-cancer therapy and anti-oxidative stress by co-administration of granulocyte-colony stimulating factor-mobilized stem cells or cells derived from bone marrow and/or spleen plus vaccination with chemotherapeutic cyclophosphamide

Chen W, Zheng R, Baade PD, et al. Cancer statistics in China. CA: Cancer J Clin. 2015;66(2):115–32.

CAS  Google Scholar 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics 2012. CA: Cancer J Clin. 2015;65:87–108.

PubMed  Google Scholar 

Ferlay J, Ervik M, Lam F, et al. Global cancer observatory: cancer today. Lyon, France: international agency for research on cancer. 2018;3(20):2019.

Google Scholar 

Barrios CH. Global challenges in breast cancer detection and treatment. The Breast. 2022;62:S3–6.

Article  PubMed  PubMed Central  Google Scholar 

Gomaa S, Abou-Shaefy A, Mohamed MB, Aladawy A. Combination treatment of thymoquinone-loaded gold nanoparticles and cisplatin potentiates anti-tumour activity and immunomodulatory effects in breast cancer model. Egyptian J Exp Biol (Zoology). 2018;14(1):21–21.

Article  Google Scholar 

Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019;2:141–60.

PubMed  PubMed Central  Google Scholar 

Kocarnik JM, Compton K, Dean FE, et al. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: A systematic analysis for the global burden of disease study 2019. JAMA oncology. 2022;8(3):420–44.

Article  PubMed  Google Scholar 

Longley DB, Johnston PG. Molecular mechanisms of drug resistance. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 2005;205(2):275–92.

Article  CAS  Google Scholar 

Alfarouk KO, Stock CM, Taylor S, et al. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int. 2015;15:71.

Article  PubMed  PubMed Central  Google Scholar 

Rueff J, Rodrigues AS. Cancer drug resistance: a brief overview from a genetic viewpoint. Methods Mol Biol. 2016;1395:1–18.

Article  PubMed  CAS  Google Scholar 

Tian S, Jiang X, Tang Y, Han T. Laminaria japonica fucoidan ameliorates cyclophosphamide-induced liver and kidney injury possibly by regulating Nrf2/HO-1 and TLR4/NF-κB signaling pathways. J Sci Food Agric. 2022;102(6):2604–12.

Article  PubMed  CAS  Google Scholar 

Adusumilli PS, Cha E, Cornfeld M, et al. New cancer immunotherapy agents in development: a report from an associated program of the 31st Annual Meeting of the Society for Immunotherapy of Cancer, 2016. J Immunother Cancer. 2017;5(1):1–9.

Article  Google Scholar 

Borghaei H, Smith MR, Campbell KS. Immunotherapy of cancer. Eur J Pharmacol. 2009;625(1–3):41–54.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Subramaniam DS, Liu SV, Giaccone G. Novel approaches to cancer immunotherapy. Dis Med. 2016;21(116):267–74.

Google Scholar 

Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8(4):299–308.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zouhari S, Saadi S, Elmouki I, Hamdachi A, Rachik M. Mixed immunotherapy and chemotherapy of tumors: optimal control approach. Int J Comput Sci. 2013;10:1694–784.

Google Scholar 

Pitt JM, Dalil Hannani D, Vétizou M, Zitvogel L. Combining immunotherapies with standard therapies in the treatment of cancer. Encyclopedia Immunobiol. 2016;4:569–80.

Article  Google Scholar 

Abdel Salam SG, Salem ML, Nassef M, Abdu SH, El-Adl R. Efficacy of combined administration of chemoimmunotherapy with bone marrow cells or granulocyte-colony stimulating factor-mobilized stem cells on expansion of myeloid and stem cells. Clin Cancer Investig J. 2017;6:73–80.

Article  CAS  Google Scholar 

Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol. 2012;12(4):269–81.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Stroncek DF, Berger C, Cheever MA, Childs RW, Dudley ME, Flynn P. New directions in cellular therapy of cancer: a summary of the summit on cellular therapy for cancer. J Transl Med. 2012;10:48–53.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Young HK, Beom KC, Ho SO, Woo JK, Robert S, Mittler Byoung SK. Mechanisms involved in synergistic anticancer effects of anti-4-1BB and cyclophosphamide therapy. Mol Cancer Ther. 2009;8:469–78.

Article  Google Scholar 

Gattinoni L, Powell DJ Jr, Rosenberg SA, Restifo NP. Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol. 2006;6(5):383–93.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wrzesinski C, Restifo NP. Less is more: lymphodepletion followed by hematopoietic stem cell transplant augments adoptive T-cell-based anti-tumor immunotherapy. Curr Opin Immunol. 2005;17(2):195–201.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Paulos CM, Wrzesinski C, Kaiser A, et al. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J Clin Investig. 2007;117(8):2197–204.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wrzesinski C, Paulos CM, Kaiser A, et al. Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific T cells. J Immunother. 2010;33:1–7.

Article  PubMed  PubMed Central  Google Scholar 

Nakahara T, Uchi H, Lesokhin AM, et al. Cyclophosphamide enhances immunity by modulating the balance of dendritic cell subsets in lymphoid organs. Blood. 2010;115(22):4384–92.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Birbrair A, Frenette PS. Niche heterogeneity in the bone marrow. Ann N Y Acad Sci. 2016;1370(1):82–96.

Article  PubMed  PubMed Central  Google Scholar 

Sistigu A, Viaud S, Chaput N, Bracci L, Proietti E, Zitvogel L. Immunomodulatory effects of cyclophosphamide and implementations for vaccine design. In Seminars in immunopathology. 2011;33(4):369–83.

Article  CAS  Google Scholar 

Wrzesinski C, Paulos CM, Gattinoni L, et al. Hematopoietic stem cells promote the expansion and function of adoptively transferred antitumor CD8 T cells. J Clin Invest. 2007;117:492–501.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rossetti RAM, Lorenzi NPC, Yokochi K, Rosa M, Benevides L, Margarido PFR, Baracat EC, Carvalho JP, Luisa Lina Villa LL, Ana Paula Lepique AP. B lymphocytes can be activated to act as antigen-presenting cells to promote anti-tumor responses. PLoS ONE. 2018;13(7):e0199034.

Article  PubMed  PubMed Central  Google Scholar 

Shi JY, Gao Q, Wang ZC, Zhou J, Wang XY, Min ZH, Shi YH, Shi GM, Ding ZB, Ke AW, Dai Z, Qiu SJ, Song K, Fan J. Margin-infiltrating CD20(+) B cells display an atypical memory phenotype and correlate with favorable prognosis in hepatocellular carcinoma. Clin Cancer Res. 2013;19(21):5994–6005.

Article  PubMed  CAS  Google Scholar 

Xia Y, Tao H, Hu Y, Chen Q, Chen X, Xia L, Zhou L, Wang Y, Bao Y, Huang S, Ren X, Lundy SK, Dai F, Li Q, Chang AE. IL-2 augments the therapeutic efficacy of adoptively transferred B cells which directly kill tumor cells via the CXCR4/CXCL12 and perforin pathways. Oncotarget. 2016;7(37):60461–74.

Article  PubMed  PubMed Central  Google Scholar 

Slaney CY, Kershaw MH, Darcy PK. Trafficking of T cells into tumors. Cancer Res. 2014;74:7168–74.

Article  PubMed  CAS  Google Scholar 

Chen B, Li H, Liu C, Xiang X, Wang S, Wu A, Shen Y, Li G. Prognostic value of the common tumor-infiltrating lymphocyte subtypes for patients with non-small cell lung cancer: a meta-analysis. PLoS ONE. 2020;15.

Comments (0)

No login
gif