Phenotypic characterization of tumor associated macrophages and circulating monocytes in patients with Urothelial carcinoma of bladder

F. Bray et al., (2024) “Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: A Cancer Journal for Clinicians, 74:3229–263, https://doi.org/10.3322/caac.21834.

Black AJ, Black PC. Variant histology in bladder cancer: diagnostic and clinical implications. Transl Cancer Res. 2020;9(10):6565–75. https://doi.org/10.21037/tcr-20-2169.

Article  PubMed  PubMed Central  Google Scholar 

Kamat AM, et al. Bladder cancer. The Lancet. 2016;388(10061):2796–810. https://doi.org/10.1016/S0140-6736(16)30512-8.

Article  Google Scholar 

Siefker-Radtke A, Curti B. Immunotherapy in metastatic urothelial carcinoma: focus on immune checkpoint inhibition. Nat Rev Urol. 2018;15(2):112–24. https://doi.org/10.1038/nrurol.2017.190.

Article  CAS  PubMed  Google Scholar 

Powles T, et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2018;391(10122):748–57. https://doi.org/10.1016/S0140-6736(17)33297-X.

Article  CAS  PubMed  Google Scholar 

Grande E, et al. Atezolizumab plus chemotherapy versus placebo plus chemotherapy in untreated locally advanced or metastatic urothelial carcinoma (IMvigor130): final overall survival analysis results from a randomised, controlled, phase 3 study. Lancet Oncol. 2024;25(1):29–45. https://doi.org/10.1016/S1470-2045(23)00540-5.

Article  CAS  PubMed  Google Scholar 

Bai R, et al. Mechanisms of Cancer Resistance to Immunotherapy. Front Oncol. 2020;10:1290. https://doi.org/10.3389/fonc.2020.01290.

Article  PubMed  PubMed Central  Google Scholar 

Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov. 2018;17(12):887–904. https://doi.org/10.1038/nrd.2018.169.

Article  CAS  PubMed  Google Scholar 

Anderson NR, Minutolo NG, Gill S, Klichinsky M. Macrophage-Based Approaches for Cancer Immunotherapy. Can Res. 2021;81(5):1201–8. https://doi.org/10.1158/0008-5472.CAN-20-2990.

Article  CAS  Google Scholar 

Yang J, Zhang L, Yu C, Yang X-F, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014;2:1. https://doi.org/10.1186/2050-7771-2-1.

Article  PubMed  PubMed Central  Google Scholar 

Mantovani A, Allavena P, Marchesi F, Garlanda C. Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov. 2022;21(11):799–820. https://doi.org/10.1038/s41573-022-00520-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gordon SR, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545(7655):495–9. https://doi.org/10.1038/nature22396.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leblond MM, Zdimerova H, Desponds E, Verdeil G. Tumor-Associated Macrophages in Bladder Cancer: Biological Role, Impact on Therapeutic Response and Perspectives for Immunotherapy. Cancers (Basel). 2021;13(18):4712. https://doi.org/10.3390/cancers13184712.

Article  CAS  PubMed  Google Scholar 

Pichler R, Fritz J, Zavadil C, Schäfer G, Culig Z, Brunner A. Tumor-infiltrating immune cell subpopulations influence the oncologic outcome after intravesical Bacillus Calmette-Guérin therapy in bladder cancer. Oncotarget. 2016;7(26):39916–30. https://doi.org/10.18632/oncotarget.9537.

Article  PubMed  PubMed Central  Google Scholar 

Sjödahl G, et al. Infiltration of CD3+ and CD68+ cells in bladder cancer is subtype specific and affects the outcome of patients with muscle-invasive tumors11Grant support: The Swedish Cancer Society, the Swedish research council, the Nilsson Cancer foundation, the BioCARE Strategic Cancer Research program, the Lund Medical Faculty, and FoU Landstinget Kronoberg and Södra Regionvårdnämnden. Urologic Oncology: Seminars and Original Investigations. 2014;32(6):791–7. https://doi.org/10.1016/j.urolonc.2014.02.007.

Article  PubMed  Google Scholar 

Cassetta L, et al. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell. 2019;35(4):588-602.e10. https://doi.org/10.1016/j.ccell.2019.02.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singhal S, et al. Human tumor-associated monocytes/macrophages and their regulation of T cell responses in early-stage lung cancer. Sci Transl Med. 2019;11(479):eaat1500. https://doi.org/10.1126/scitranslmed.aat1500.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brauneck F, et al. Immunosuppressive M2 TAMs represent a promising target population to enhance phagocytosis of ovarian cancer cells in vitro. Front Immunol. 2023;14:1250258. https://doi.org/10.3389/fimmu.2023.1250258.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Magers MJ, Lopez-Beltran A, Montironi R, Williamson SR, Kaimakliotis HZ, Cheng L. Staging of bladder cancer. Histopathology. 2019;74(1):112–34. https://doi.org/10.1111/his.13734.

Article  PubMed  Google Scholar 

Suriano F, et al. Tumor associated macrophages polarization dictates the efficacy of BCG instillation in non-muscle invasive urothelial bladder cancer. J Exp Clin Cancer Res. 2013;32(1):87. https://doi.org/10.1186/1756-9966-32-87.

Article  PubMed  PubMed Central  Google Scholar 

Wang X, et al. Bladder cancer cells induce immunosuppression of T cells by supporting PD-L1 expression in tumour macrophages partially through interleukin 10. Cell Biol Int. 2017;41(2):177–86. https://doi.org/10.1002/cbin.10716.

Article  CAS  PubMed  Google Scholar 

Kapellos TS, et al. Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. Front Immunol. 2019;10:2035. https://doi.org/10.3389/fimmu.2019.02035.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh A, et al. Autophagy-associated HMGB-1 as a novel potential circulating non-invasive diagnostic marker for detection of Urothelial Carcinoma of Bladder. Mol Cell Biochem. 2021. https://doi.org/10.1007/s11010-021-04299-8.

Article  PubMed  PubMed Central  Google Scholar 

Anand V, et al. CD44 splice variant (CD44v3) promotes progression of urothelial carcinoma of bladder through Akt/ERK/STAT3 pathways: novel therapeutic approach. J Cancer Res Clin Oncol. 2019;145(11):2649–61. https://doi.org/10.1007/s00432-019-03024-9.

Article  PubMed  Google Scholar 

Singh P, et al. Non-invasive diagnostic potential of microRNA-203 in liquid biopsy of urothelial carcinoma of bladder. Mol Cell Biochem. 2022;477(9):2173–82. https://doi.org/10.1007/s11010-022-04431-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gentles AJ, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015;21(8):938–45. https://doi.org/10.1038/nm.3909.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu B, et al. Blockade of DC-SIGN+ Tumor-Associated Macrophages Reactivates Antitumor Immunity and Improves Immunotherapy in Muscle-Invasive Bladder Cancer. Can Res. 2020;80(8):1707–19. https://doi.org/10.1158/0008-5472.CAN-19-2254.

Article  CAS  Google Scholar 

Chavan R, Salvador D, Gustafson MP, Dietz AB, Nevala W, Markovic SN. Untreated Stage IV Melanoma Patients Exhibit Abnormal Monocyte Phenotypes and Decreased Functional Capacity. Cancer Immunol Res. 2014;2(3):241–8. https://doi.org/10.1158/2326-6066.CIR-13-0094.

Article  CAS  PubMed  Google Scholar 

Prat M, et al. Circulating CD14high CD16low intermediate blood monocytes as a biomarker of ascites immune status and ovarian cancer progression. J Immunother Cancer. 2020;8(1):e000472.

Comments (0)

No login
gif