The urease E subunit vaccine stimulate the immune response versus in animal model

Pereira MI, Medeiros JA. Role of Helicobacter pylori in gastric mucosa-associated lymphoid tissue lymphomas. World J Gastroenterol: WJG. 2014;20(3):684.

Article  PubMed  PubMed Central  Google Scholar 

Saxena A, Mukhopadhyay AK, Nandi SP. Helicobacter pylori: perturbation and restoration of gut microbiome. J Biosci. 2020;45:1–15.

Article  Google Scholar 

Thung I, Aramin H, Vavinskaya V, Gupta S, Park JY, Crowe SE, Valasek MA. the global emergence of Helicobacter pylori antibiotic resistance. Aliment Pharmacol Ther. 2016;43(4):514–33.

Article  CAS  PubMed  Google Scholar 

Matos R, Amorim I, Magalhães A, Haesebrouck F, Gärtner F, Reis CA. Adhesion of Helicobacter species to the human gastric mucosa: a deep look into glycans role. Front Mol Biosci. 2021;8:656439.

Article  CAS  PubMed  PubMed Central  Google Scholar 

BangaNdzouboukou JL, Lei Q, Ullah N, Zhang Y, Hao L, Fan X. Helicobacter pylori adhesins: HpaA a potential antigen in experimental vaccines for H pylori. Helicobacter. 2021;26(1):e12758.

Article  CAS  Google Scholar 

Schoep TD, Fulurija A, Good F, Lu W, Himbeck RP, Schwan C, Marshall BJ. Surface properties of Helicobacter pylori urease complex are essential for persistence. PLoS One. 2010;5(11):e15042.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carlsohn E, Nyström J, Bölin I, Nilsson CL, Svennerholm AM. HpaA is essential for Helicobacter pylori colonization in mice. Infect Immun. 2006;74(2):920–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan X, Pan L. Protection against Helicobacter pylori infection in BALB/c mouse model by oral administration of multivalent epitope-based vaccine of cholera toxin B subunit-HUUC. Front Immunol. 2018;9:344572.

Article  Google Scholar 

Benoit S, Maier RJ. Dependence of Helicobacter pylori urease activity on the nickel-sequestering ability of the UreE accessory protein. J Bacteriol. 2003;185(16):4787–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ansari S, Yamaoka Y. Survival of Helicobacter pylori in gastric acidic territory. Helicobacter. 2017;22(4):e12386.

Article  Google Scholar 

Lee MH, Roussel Y, Wilks M, Tabaqchali S. Expression of Helicobacter pylori urease subunit B gene in Lactococcus lactis MG1363 and its use as a vaccine delivery system against H pylori infection in mice. Vaccine. 2001;19(28–29):3927–35.

Article  CAS  PubMed  Google Scholar 

Rahimi E, Ameri M, Doosti A, Gholampour AR. Occurrence of toxigenic Vibrio parahaemolyticus strains in shrimp in Iran. Foodborne Pathog Dis. 2010;7(9):1107–11.

Mejías-Luque R., & Gerhard M. (2017). Immune evasion strategies and persistence of Helicobacter pylori. Molecular Pathogenesis and Signal Transduction by Helicobacter pylori. 53–71

Rosenbaum P, Tchitchek N, Joly C, Rodriguez Pozo A, Stimmer L, Langlois S, Martinon F. Vaccine inoculation route modulates early immunity and consequently antigen-specific immune response. Frontiers Immunol. 2021;12:645210.

Article  CAS  Google Scholar 

Chehelgerdi M, Heidarnia F, Dehkordi FB, Chehelgerdi M, Khayati S, Khorramian-Ghahfarokhi M, Kabiri H. Immunoinformatic prediction of potential immunodominant epitopes from cagW in order to investigate protection against Helicobacter pylori infection based on experimental consequences. Funct Integr Genom. 2023;23(2):107.

Article  CAS  Google Scholar 

Azadbakht N, Doosti A, Jami MS. CRISPR/Cas9-mediated LINC00511 knockout strategies, increased apoptosis of breast cancer cells via suppressing antiapoptotic genes. Biol Proced Online. 2022;24(1):8.

Liu KY, Shi Y, Luo P. Therapeutic efficacy of oral immunization with attenuated Salmonella typhimurium expressing Helicobacter pylori CagA, VacA and UreB fusion proteins in mice model. Vaccine. 2011;29(38):6679–85.

Article  CAS  PubMed  Google Scholar 

Hobernik D, Bros M. DNA vaccines—how far from clinical use? Int J Mol Sci. 2018;19(11):3605.

Article  PubMed  PubMed Central  Google Scholar 

Zhou WY, Shi Y, Wu C, Zhang WJ, Mao XH, Guo G, Zou QM. Therapeutic efficacy of a multi-epitope vaccine against Helicobacter pylori infection in BALB/c mice model. Vaccine. 2009;27(36):5013–9.

Article  CAS  PubMed  Google Scholar 

Lee J, Kumar SA, Jhan YY, Bishop CJ. Engineering DNA vaccines against infectious diseases. Acta Biomater. 2018;15(80):31–47.

Article  Google Scholar 

Kim C, Hovakimyan A, Zagorski K, Antonyan T, Petrushina I, Davtyan H, Agadjanyan MG. Efficacy and immunogenicity of MultiTEP-based DNA vaccines targeting human α-synuclein: prelude for IND enabling studies. NPJ Vaccines. 2022;7(1):1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaveh-Samani A, Dalali S, Kaviani F, Piri-Gharaghie T, Doosti A. Oral administration of DNA alginate nanovaccine induced immune-protection against Helicobacter pylori in Balb/C mice. BMC Immunol. 2024;25(1):11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo L, Yin R, Xu G, Gong X, Chang Z, Hong D, Liu K. Immunologic properties and therapeutic efficacy of a multivalent epitope-based vaccine against four Helicobacter pylori adhesins (urease, Lpp20, HpaA, and CagL) in Mongolian gerbils. Helicobacter. 2017;22(6):e12428.

Article  Google Scholar 

Bosschem I, Bayry J, De Bruyne E, Van Deun K, Smet A, Vercauteren G, Flahou B. Effect of different adjuvants on protection and side-effects induced by Helicobacter suis whole-cell lysate vaccination. PloS One. 2015;10(6):e0131364.

Article  PubMed  PubMed Central  Google Scholar 

Mirzaei N, Poursina F, Moghim S, Rashidi N, GhasemianSafaei H. The study of H pylori putative candidate factors for single-and multi-component vaccine development. Crit Rev Microbiol. 2017;43(5):631–50.

Article  CAS  PubMed  Google Scholar 

Wilson CC, Newman MJ, Livingston BD, MaWhinney S, Forster JE, Scott J, Benson CA. Clinical phase 1 testing of the safety and immunogenicity of an epitope-based DNA vaccine in human immunodeficiency virus type 1-infected subjects receiving highly active antiretroviral therapy. Clin Vaccine Immunol. 2008;15(6):986–94.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Groot AS, McMurry J, Marcon L, Franco J, Rivera D, Kutzler M, Martin B. Developing an epitope-driven tuberculosis (TB) vaccine. Vaccine. 2005;23(17–18):2121–31.

PubMed  Google Scholar 

Jafarzadeh A, Larussa T, Nemati M, Jalapour S. T cell subsets play an important role in the determination of the clinical outcome of Helicobacter pylori infection. Microb Pathog. 2018;116:227–36.

Article  CAS  PubMed  Google Scholar 

Romagnani S. Th1/th2 cells. Inflamm Bowel Dis. 1999;5(4):285–94.

Article  CAS  PubMed  Google Scholar 

Bagheri N, Salimzadeh L, Shirzad H. The role of T helper 1-cell response in Helicobacter pylori-infection. Microb Pathog. 2018;123:1–8.

Article  CAS  PubMed  Google Scholar 

Shi Y, Liu XF, Zhuang Y, Zhang JY, Liu T, Yin Z, Zou QM. Helicobacter pylori-induced Th17 responses modulate Th1 cell responses, benefit bacterial growth, and contribute to pathology in mice. J Immunol. 2010;184(9):5121–9.

Article  CAS  PubMed  Google Scholar 

Bretscher PA. On the mechanism determining the TH1/TH2 phenotype of an immune response, and its pertinence to strategies for the prevention, and treatment, of certain infectious diseases. Scand J Immunol. 2014;79(6):361–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moyat M, Velin D. Immune responses to Helicobacter pylori infection. World J Gastroenterol WJG. 2014;20(19):5583.

Article  CAS  PubMed  Google Scholar 

Dooyema SD, Noto JM, Wroblewski LE, Piazuelo MB, Krishna U, Suarez G, Peek RM. Helicobacter pylori actively suppresses innate immune nucleic acid receptors. Gut Microbes. 2022;14(1):2105102.

Article  PubMed  PubMed Central 

Comments (0)

No login
gif