Holt RIG, Cockram CS, Flyvbjerg A, Goldstein BJ (2017) Textbook of diabetes. Wiley-Blackwell, Chichester, UK
Neel JV (1976) Diabetes mellitus — a geneticist’s nightmare. In: Creutzfeldt W, Köbberling J, Neel JV (eds) The genetics of diabetes mellitus. Springer, Berlin, Heidelberg, pp 1–11. https://doi.org/10.1007/978-3-642-66332-1_1
Rich SS (2016) Diabetes: Still a geneticist’s nightmare. Nature 536:37–38. https://doi.org/10.1038/nature18906
Article PubMed CAS Google Scholar
Suzuki K, Hatzikotoulas K, Southam L et al (2024) Genetic drivers of heterogeneity in type 2 diabetes pathophysiology. Nature 627:347–357. https://doi.org/10.1038/s41586-024-07019-6
Article PubMed PubMed Central CAS Google Scholar
Mahajan A, Spracklen CN, Zhang W et al (2022) Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat Genet 54:560–572. https://doi.org/10.1038/s41588-022-01058-3
Article PubMed PubMed Central CAS Google Scholar
Mahajan A, Taliun D, Thurner M et al (2018) Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet 50(11):1505–1513. https://doi.org/10.1038/s41588-018-0241-6
Article PubMed PubMed Central CAS Google Scholar
Vujkovic M, Keaton JM, Lynch JA et al (2020) Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet 52:680–691. https://doi.org/10.1038/s41588-020-0637-y
Article PubMed PubMed Central CAS Google Scholar
Prasad RB, Groop L (2015) Genetics of type 2 diabetes-pitfalls and possibilities. Genes (Basel) 6:87–123. https://doi.org/10.3390/genes6010087
Article PubMed CAS Google Scholar
Spracklen CN, Horikoshi M, Kim YJ et al (2020) Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature 582:240–245. https://doi.org/10.1038/s41586-020-2263-3
Article PubMed PubMed Central CAS Google Scholar
Kengne AP, Beulens JW, Peelen LM et al (2014) Non-invasive risk scores for prediction of type 2 diabetes (EPIC-InterAct): a validation of existing models. Lancet Diabetes Endocrinol 2:19–29. https://doi.org/10.1016/S2213-8587(13)70103-7
Di Camillo B, Hakaste L, Sambo F et al (2018) HAPT2D: high accuracy of prediction of T2D with a model combining basic and advanced data depending on availability. Eur J Endocrinol 178:331–341. https://doi.org/10.1530/EJE-17-0921
Hippisley-Cox J, Coupland C (2017) Development and validation of QDiabetes-2018 risk prediction algorithm to estimate future risk of type 2 diabetes: cohort study. BMJ 359:j5019. https://doi.org/10.1136/bmj.j5019
Article PubMed PubMed Central Google Scholar
Bonora E, Trombetta M, Dauriz M et al (2020) Chronic complications in patients with newly diagnosed type 2 diabetes: prevalence and related metabolic and clinical features: the Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) 9. BMJ Open Diabetes Res Care 8(1):e001549. https://doi.org/10.1136/bmjdrc-2020-001549
Article PubMed PubMed Central Google Scholar
Jayedi A, Soltani S, Motlagh SZT et al (2022) Anthropometric and adiposity indicators and risk of type 2 diabetes: systematic review and dose-response meta-analysis of cohort studies. BMJ 376:e067516. https://doi.org/10.1136/bmj-2021-067516
Article PubMed PubMed Central Google Scholar
Pepe MS, Janes H, Longton G, Leisenring W, Newcomb P (2004) Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. Am J Epidemiol 159:882–890. https://doi.org/10.1093/aje/kwh101
Lendrem BC, Lendrem DW, Pratt AG et al (2019) Between a ROC and a hard place: Teaching prevalence plots to understand real world biomarker performance in the clinic. Pharm Stat 18:632–635. https://doi.org/10.1002/pst.1963
Almgren P, Lehtovirta M, Isomaa B et al (2011) Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study. Diabetologia 54:2811–2819. https://doi.org/10.1007/s00125-011-2267-5
Article PubMed CAS Google Scholar
Ritchie SC, Taylor HJ, Liang Y et al (2024) Integrated clinical risk prediction of type 2 diabetes with a multifactorial polygenic risk score. MedRxiv (Preprint). 23 Sep 2024. Available from: https://doi.org/10.1101/2024.08.22.24312440
Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753. https://doi.org/10.1038/nature08494
Article PubMed PubMed Central CAS Google Scholar
Bjornstad P, Drews K, Zeitler PS (2021) Long-term complications in youth-onset type 2 diabetes. Reply. N Engl J Med 385:2016
Lin B, Coleman RL, Bragg F, Maddaloni E, Holman RR, Adler AI (2024) Younger-onset compared with later-onset type 2 diabetes: an analysis of the UK Prospective Diabetes Study (UKPDS) with up to 30 years of follow-up (UKPDS 92). Lancet Diabetes Endocrinol 12:904–914. https://doi.org/10.1016/S2213-8587(24)00242-0
Brunetti P (2007) The lean patient with type 2 diabetes: characteristics and therapy challenge. Int J Clin Pract Suppl 153:3–9. https://doi.org/10.1111/j.1742-1241.2007.01359.x
Liu X, Collister JA, Clifton L, Hunter DJ, Littlejohns TJ (2023) Polygenic risk of prediabetes, undiagnosed diabetes, and incident type 2 diabetes stratified by diabetes risk factors. J Endocr Soc 7:bvad020. https://doi.org/10.1210/jendso/bvad020
Article PubMed PubMed Central Google Scholar
Ojima T, Namba S, Suzuki K et al (2024) Body mass index stratification optimizes polygenic prediction of type 2 diabetes in cross-biobank analyses. Nat Genet 56:1100–1109. https://doi.org/10.1038/s41588-024-01782-y
Article PubMed CAS Google Scholar
Tamlander M, Mars N, Pirinen M, FinnGen Widen E, Ripatti S (2022) Integration of questionnaire-based risk factors improves polygenic risk scores for human coronary heart disease and type 2 diabetes. Commun Biol 5:158. https://doi.org/10.1038/s42003-021-02996-0
Article PubMed PubMed Central CAS Google Scholar
Yu G, Tam CHT, Lim CKP et al (2025) Type 2 diabetes pathway-specific polygenic risk scores elucidate heterogeneity in clinical presentation, disease progression and diabetic complications in 18,217 Chinese individuals with type 2 diabetes. Diabetologia 68(3):602–614. https://doi.org/10.1007/s00125-024-06309-y
Article PubMed CAS Google Scholar
Ashenhurst JR, Sazonova OV, Svrchek O et al (2022) A polygenic score for type 2 diabetes improves risk stratification beyond current clinical screening factors in an ancestrally diverse sample. Front Genet 13:871260. https://doi.org/10.3389/fgene.2022.871260
Article PubMed PubMed Central Google Scholar
Mars N, Lindbohm JV, Della BriottaParolo P et al (2022) Systematic comparison of family history and polygenic risk across 24 common diseases. Am J Hum Genet 109:2152–2162. https://doi.org/10.1016/j.ajhg.2022.10.009
Article PubMed PubMed Central CAS Google Scholar
Hivert MF, Jablonski KA, Perreault L et al (2011) Updated genetic score based on 34 confirmed type 2 diabetes Loci is associated with diabetes incidence and regression to normoglycemia in the diabetes prevention program. Diabetes 60:1340–1348. https://doi.org/10.2337/db10-1119
Article PubMed PubMed Central CAS Google Scholar
Merino J, Guasch-Ferre M, Li J et al (2022) Polygenic scores, diet quality, and type 2 diabetes risk: an observational study among 35,759 adults from 3 US cohorts. PLoS Med 19:e1003972.
Comments (0)