Weibel ER (2017) Lung morphometry: the link between structure and function. Cell Tissue Res 367(3):413–426. https://doi.org/10.1007/s00441-016-2541-4
Hsia CCW, Hyde DM, Weibel ER (2016). Lung structure and the intrinsic challenges of gas exchange. Comprehensive physiology. Hoboken, NJ, USA: John Wiley & Sons, Inc 827–95. https://doi.org/10.1002/cphy.c150028
Clark A, Tawhai M (2019). Pulmonary vascular dynamics. In: Comprehensive physiology Wiley 1081–100. https://doi.org/10.1002/cphy.c180033
Vaillancourt M, Chia P, Sarji S, Nguyen J, Hoftman N, Ruffenach G et al (2017) Autonomic nervous system involvement in pulmonary arterial hypertension. Respir Res 18:201. https://doi.org/10.1186/s12931-017-0679-6
Article PubMed PubMed Central CAS Google Scholar
Sylvester JT, Shimoda LA, Aaronson PI, Ward JPT (2012) Hypoxic pulmonary vasoconstriction. Physiol Rev 92(1):367–520
Article PubMed CAS Google Scholar
Goldenberg NM, Kuebler WM (2015). Endothelial cell regulation of pulmonary vascular tone, inflammation, and coagulation. Comprehensive physiology. Hoboken, NJ, USA: John Wiley & Sons, Inc 531–59. https://doi.org/10.1002/cphy.c140024
Burnstock G (2017) Purinergic signaling in the cardiovascular system. Circ Res 120(1):207–228. https://doi.org/10.1161/CIRCRESAHA.116.309726
Article PubMed CAS Google Scholar
Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE (2011) International union of basic and clinical pharmacology. LXXXI. Nomenclature and classification of adenosine receptors - An update. Pharmacol Rev 63(1):1–34
Article PubMed PubMed Central CAS Google Scholar
North RA (2002) Molecular physiology of P2X receptors. Physiol Rev Am Physiol Soc 82:1013–1067
von Kügelgen I (2019) Pharmacology of P2Y receptors. Brain Res Bull 151:12–24. https://doi.org/10.1016/j.brainresbull.2019.03.010
O’Connor SE, Dainty IA, Leff P (1991) Further subclassification of ATP receptors based on agonist studies. Trends Pharmacol Sci 12(C):137–41
Burnstock G, Ralevic V (2013) Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 66(1):102–192
Zimmermann H (2021) Ectonucleoside triphosphate diphosphohydrolases and ecto-5′-nucleotidase in purinergic signaling: how the field developed and where we are now. Purinergic Signal 17(1):117–125
Article PubMed CAS Google Scholar
Goueli SA, Hsiao K (2019) Monitoring and characterizing soluble and membrane-bound ectonucleotidases CD73 and CD39. PLoS ONE 14(10):1–19
Allard B, Longhi MS, Robson SC, Stagg J (2017) The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol Rev 276:121–144
Article PubMed PubMed Central CAS Google Scholar
Robson SC, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2(2):409–430. https://doi.org/10.1007/s11302-006-9003-5
Article PubMed PubMed Central CAS Google Scholar
Eckle T, Füllbier L, Wehrmann M, Khoury J, Mittelbronn M, Ibla J et al (2007) Identification of ectonucleotidases CD39 and CD73 in innate protection during acute lung injury. J Immunol 178(12):8127–8137
Article PubMed CAS Google Scholar
Burch LH, Picher M (2006) E-NTPDases in human airways: regulation and relevance for chronic lung diseases. Purinergic Signalling 2:399–408
Article PubMed PubMed Central CAS Google Scholar
Stevens T, Phan S, Frid MG, Alvarez D, Herzog E, Stenmark KR (2008) Lung vascular cell heterogeneity: endothelium, smooth muscle, and fibroblasts. Proc Am Thorac Soc 5(7):783–791. https://doi.org/10.1513/pats.200803-027HR
Chootip K, Ness KF, Wang Y, Gurney AM, Kennedy C (2002) Regional variation in P2 receptor expression in the rat pulmonary arterial circulation. Br J Pharmacol 137(5):637–646
Article PubMed PubMed Central CAS Google Scholar
Lewis CJ, Evans RJ (2001) P2X receptor immunoreactivity in different arteries from the femoral, pulmonary, cerebral, coronary and renal circulations. J Vasc Res 38(4):332–340
Article PubMed CAS Google Scholar
Huang C, Hu J, Subedi KP, Lin AHY, Paudel O, Ran P et al (2015) Extracellular adenosine diphosphate ribose mobilizes intracellular Ca 2+ via purinergic-dependent Ca 2+ pathways in rat pulmonary artery smooth muscle cells. Cell Physiol Biochem 37(5):2043–2059
Article PubMed CAS Google Scholar
Mitchell C, Syed NH, Tengah A, Gurney AM, Kennedy C (2012) Identification of contractile P2Y1, P2Y6, and P2Y12 receptors in rat intrapulmonary artery using selective ligands. J Pharmacol Exp Ther 343(3):755–762
Article PubMed CAS Google Scholar
Syed N-H, Tengah A, Paul A, Kennedy C (2010) Characterisation of P2X receptors expressed in rat pulmonary arteries. Eur J Pharmacol 649(1–3):342–348
Article PubMed CAS Google Scholar
Hartley SA, Kato K, Salter KJ, Kozlowski RZ (1998) Functional evidence for a novel suramin-insensitive pyrimidine receptor in rat small pulmonary arteries. Circ Res 83(9):940–946
Article PubMed CAS Google Scholar
Rubino A, Ziabary L, Burnstock G (2019) Regulation of vascular tone by UTP and UDP in isolated rat intrapulmonary arteries. Eur J Pharmacol 370(2):139–143
Liu SF, McCormack DG, Evans TW, Barnes PJ (1989) Characterization and distribution of P2-purinoceptor subtypes in rat pulmonary vessels. J Pharmacol Exp Ther 251(3):1204–1210
Henriquez M, Fonseca M, Perez-Zoghbi JF (2018) Purinergic receptor stimulation induces calcium oscillations and smooth muscle contraction in small pulmonary veins. J Physiol 596(13):2491–2506
Article PubMed PubMed Central CAS Google Scholar
Kiefmann R, Islam MN, Lindert J, Parthasarathi K, Bhattacharya J (2009) Paracrine purinergic signaling determines lung endothelial nitric oxide production. Am J Physiol Cell Mol Physiol 296(6):L901–L910. https://doi.org/10.1152/ajplung.90549.2008
Baek EB, Yoo HY, Park SJ, Kim HS, Kim SD, Earm YE et al (2008) Luminal ATP-induced contraction of rabbit pulmonary arteries and role of purinoceptors in the regulation of pulmonary arterial pressure. Pflügers Arch - Eur J Physiol 457(2):281–291. https://doi.org/10.1007/s00424-008-0536-z
Hasséssian H, Bodin P, Burnstock G (1993) Blockade by glibenclamide of the flow-evoked endothelial release of ATP that contributes to vasodilatation in the pulmonary vascular bed of the rat. Br J Pharmacol 109(2):466–472
Sprague RS, Olearczyk JJ, Spence DM, Stephenson AH, Sprung RW, Lonigro AJ (2003) Extracellular ATP signaling in the rabbit lung: erythrocytes as determinants of vascular resistance. Am J Physiol Circ Physiol 285(2):H693-700
Mitchell C, Syed NIH, Gurney AM, Kennedy C (2012) A Ca 2+-dependent chloride current and Ca 2+ influx via Ca v1.2 ion channels play major roles in P2Y receptor-mediated pulmonary vasoconstriction. Br J Pharmacol 166(4):1503–12
Article PubMed PubMed Central CAS Google Scholar
Moerenhout M, Himpens B, Vereecke J (2001) Intercellular communication upon mechanical stimulation of CPAE-endothelial cells is mediated by nucleotides. Cell Calcium 29(2):125–136
Comments (0)