Kawate T, Michel JC, Birdsong WT, Gouaux E (2009) Crystal structure of the ATP-gated P2X4 ion channel in the closed state. Nature 460:592–598. https://doi.org/10.1038/nature08198
Article PubMed PubMed Central CAS Google Scholar
Hattori M, Gouaux E (2012) Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature 485:207–212. https://doi.org/10.1038/nature11010
Article PubMed PubMed Central CAS Google Scholar
Abdulqawi R, Dockry R, Holt K, Layton G, McCarthy BG, Ford AP, Smith JA (2015) P2X3 receptor antagonist (AF-219) in refractory chronic cough: a randomised, double-blind, placebo-controlled phase 2 study. Lancet 385:1198–1205. https://doi.org/10.1016/S0140-6736(14)61255-1
Article PubMed CAS Google Scholar
Richards D, Gever JR, Ford AP, Fountain SJ (2019) Action of MK-7264 (gefapixant) at human P2X3 and P2X2/3 receptors and in vivo efficacy in models of sensitisation. Br J Pharmacol 176:2279–2291. https://doi.org/10.1111/bph.14677
Article PubMed PubMed Central CAS Google Scholar
Pijacka W, Moraes DJ, Ratcliffe LE, Nightingale AK, Hart EC, da Silva MP, Machado BH, McBryde FD, Abdala AP, Ford AP, Paton JF (2016) Purinergic receptors in the carotid body as a new drug target for controlling hypertension. Nat Med 22:1151–1159. https://doi.org/10.1038/nm.4173
Article PubMed PubMed Central CAS Google Scholar
Gonzalez-Montelongo M, Fountain SJ (2021) Neuropeptide Y facilitates P2X1 receptor-dependent vasoconstriction via Y1 receptor activation in small mesenteric arteries during sympathetic neurogenic responses. Vascul Pharmacol 136:106810. https://doi.org/10.1016/j.vph.2020.106810
Gonzalez-Montelongo M, Meades JL, Fortuny-Gomez A, Fountain SJ (2023) Neuropeptide Y: direct vasoconstrictor and facilitatory effects on P2X1 receptor-dependent vasoconstriction in human small abdominal arteries. Vasc Pharmacol 151:107192. https://doi.org/10.1016/j.vph.2023.107192
Layhadi JA, Turner J, Crossman D, Fountain SJ (2018) ATP evokes Ca2+ responses and CXCL5 secretion via P2X4 receptor activation in human monocyte-derived macrophages. J Immunol 200:1159–1168. https://doi.org/10.4049/jimmunol.1700965
Article PubMed CAS Google Scholar
Layhadi JA, Fountain SJ (2019) ATP-evoked intracellular Ca2+ responses in M-CSF differentiated human monocyte-derived macrophage are mediated by P2X4 and P2Y11 receptor activation. Int J Mol Sci 20:5113. https://doi.org/10.3390/ijms20205113
Article PubMed PubMed Central CAS Google Scholar
Yoshida K, Ito M, Sato N, Obayashi K, Yamamoto K, Koizumi S, Tanaka S, Furuta K, Matsuoka I (2020) Extracellular ATP augments antigen-induced murine mast cell degranulation and allergic responses via P2X4 receptor activation. J Immunol 204:3077–3085. https://doi.org/10.4049/jimmunol.1900954
Article PubMed CAS Google Scholar
Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778–783. https://doi.org/10.1038/nature01786
Article PubMed CAS Google Scholar
Ulmann L, Hatcher JP, Hughes JP, Chaumont S, Green PJ, Conquet F, Buell GN, Reeve AJ, Chessell IP, Rassendren F (2008) Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci 28:11263–11268. https://doi.org/10.1523/JNEUROSCI.2308-08.2008
Article PubMed PubMed Central CAS Google Scholar
Miklavc P, Frick M (2011) Vesicular calcium channels as regulators of the exocytotic post-fusion phase. Commun Integr Biol 4:796–798. https://doi.org/10.4161/cib.17935
Article PubMed PubMed Central CAS Google Scholar
Yamamoto K, Korenaga R, Kamiya A, Ando J (2000) Fluid shear stress activates Ca2+ influx into human endothelial cells via P2X4 purinoceptors. Circ Res 87:385–391. https://doi.org/10.1161/01.RES.87.5.385
Article PubMed CAS Google Scholar
Yamamoto K, Sokabe T, Matsumoto T, Yoshimura K, Shibata M, Ohura N, Fukuda T, Sato T, Sekine K, Kato S, Isshiki M, Fujita T, Kobayashi M, Kawamura K, Masuda H, Kamiya A, Ando J (2006) Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat Med 12:133–137. https://doi.org/10.1038/nm1338
Article PubMed CAS Google Scholar
Garcia-Guzman M, Soto F, Gomez-Hernandez JM, Lund PE, Stühmer W (1997) Characterization of recombinant human P2X4 receptor reveals pharmacological differences to the rat homologue. Mol Pharmacol 51:109–118. https://doi.org/10.1124/mol.51.1.109
Article PubMed CAS Google Scholar
Jones CA, Chessell IP, Simon J, Barnard EA, Miller KJ, Michel AD, Humphrey PPA (2000) Functional characterization of the P2X4 receptor orthologues. Br J Pharmacol 129:388–394. https://doi.org/10.1038/sj.bjp.0703059
Article PubMed PubMed Central CAS Google Scholar
North RA, Surprenant A (2000) Pharmacology of cloned P2X receptors. Annu Rev Pharmacol Toxicol 40:563–580. https://doi.org/10.1146/annurev.pharmtox.40.1.563
Article PubMed CAS Google Scholar
Fischer R, Kalthof B, Gruetzman R, Woltering E, Stelte-Ludwig B, Wuttke M (2004) Benzofuro-1,4-diazepin-2-onederivatives. Patent CA2519987A1. PCT/EP2004/002580
Hernandez-Olmos V, Abdelrahman A, El-Tayeb A, Freudendahl D, Weinhausen S, Müller CE (2012) N-substituted phenoxazine and acridone derivatives: structure-activity relationships of potent P2X4 receptor antagonists. J Med Chem 55:9576–9588. https://doi.org/10.1021/jm300845v
Article PubMed CAS Google Scholar
Ase AR, Honson NS, Zaghdane H, Pfeifer TA, Seguela P (2015) Identification and characterization of a selective allosteric antagonist of human P2X4 receptor channels. Mol Pharmacol 87:606–616. https://doi.org/10.1124/mol.114.096222
Article PubMed CAS Google Scholar
Werner S, Mesch S, Hillig RC, ter Laak A, Klint J, Neagoe I, Laux-Biehlmann A, Dahllof H, Brauer N, Puetter V, Nubbemeyer R, Schulz S, Bairlein M, Zollner TM, Steinmeyer A (2019) Discovery and characterization of the potent and selective P2X4 inhibitor N-[4-(3-chlorophenoxy)-3-sulfamoylphenyl]-2-phenylacetamide (BAY-1797) and structure-guided amelioration of its CYP3A4 induction profile. J Med Chem 62:11194–11217. https://doi.org/10.1021/acs.jmedchem.9b01304
Article PubMed CAS Google Scholar
Inoue K (2021) Nociceptive signaling of P2X receptors in chronic pain states. Purinergic Signal 17:41–47. https://doi.org/10.1007/s11302-020-09743-w
Article PubMed CAS Google Scholar
D’Antongiovanni V, Pellegrini C, Benvenuti L, Fornai M, di Salvo C, Natale G, Ryskalin L, Bertani L, Lucarini E, di Cesare ML, Ghelardini C, Nemeth ZH, Haskó G, Antonioli L (2022) Anti-inflammatory effects of novel P2X4 receptor antagonists, NC-2600 and NP-1815-PX, in a murine model of colitis. Inflammation 45:1829–1847. https://doi.org/10.1007/s10753-022-01663-8
Article PubMed CAS Google Scholar
Obara K, Inaba R, Kawakita M, Murata A, Yoshioka K, Tanaka Y (2022) Effects of NP-1815-PX, a P2X4 receptor antagonist, on contractions in guinea pig tracheal and bronchial smooth muscles. Biol Pharm Bull 45(8):1158–1165
Stokes L, Layhadi JA, Bibic L, Dhuna K, Fountain SJ (2017) P2X4 receptor function in the nervous system and current breakthroughs in pharmacology. Front Pharmacol 8:1–15. https://doi.org/10.3389/fphar.2017.00291
Illes P, Müller CE, Jacobson KA, Grutter T, Nicke A, Fountain SJ, Kennedy C, Schmalzing G, Jarvis MF, Stojilkovic SS, King BF, di Virgilio F (2021) Update of P2X receptor properties and their pharmacology: IUPHAR Review 30. Br J Pharmacol 178:489–514. https://doi.org/10.1111/bph.15299
Article PubMed CAS Google Scholar
Williams WA, Linley JE, Jones CA, Shibata Y, Snijder A, Button J, Hatcher JP, Huang L, Taddese B, Thornton P, Schofield DJ (2019) Antibodies binding the head domain of P2X4 inhibit channel function and reverse neuropathic pain. Pain 160:1989–2003. https://doi.org/10.1097/j.pain.0000000000001587
Article PubMed CAS Google Scholar
Bidula S, bin Nadzirin I, Cominetti M, Hickey H, Cullum SA, Searcey M, Schmid R, Fountain SJ (2022) Structural basis of the negative allosteric modulation of 5-BDBD at human P2X4 receptors. Mol Pharmacol 101:33–44. https://doi.org/10.1124/MOLPHARM.121.000402
Comments (0)