Stock M, Schett G (2021) Vitamin K-dependent proteins in skeletal development and disease. Int J Mol Sci 22:9328. https://doi.org/10.3390/ijms22179328
Article CAS PubMed PubMed Central Google Scholar
Diaz-Franco MC, Franco-Diaz de Leon R, Villafan-Bernal JR (2019) Osteocalcin-GPRC6A: An update of its clinical and biological multi-organic interactions (Review). Mol Med Rep 19:15–22. https://doi.org/10.3892/mmr.2018.9627
Article CAS PubMed Google Scholar
Komori T (2020) Molecular mechanism of runx2-dependent bone development. Mol Cells 43:168–175. https://doi.org/10.14348/molcells.2019.0244
Lin X, Brennan-Speranza TC, Levinger I, Yeap BB (2018) Undercarboxylated Osteocalcin: Experimental and Human Evidence for a Role in Glucose Homeostasis and Muscle Regulation of Insulin Sensitivity. Nutrients 10:847. https://doi.org/10.3390/nu10070847
Article CAS PubMed PubMed Central Google Scholar
Manolagas SC (2020) Osteocalcin promotes bone mineralization but is not a hormone. PLoS Genet 16
Moriishi T, Ozasa R, Ishimoto T, Nakano T, Hasegawa T, Miyazaki T, Liu W, Fukuyama R, Wang Y, Komori H, Qin X, Amizuka N, Komori T (2020) Osteocalcin is necessary for the alignment of apatite crystallites, but not glucose metabolism, testosterone synthesis, or muscle mass. PLOS Gen 16
Smith C, Voisin S, Al Saedi A, Phu S, Brennan-Speranza T, Parker L, Eynon N, Hiam D, Yan X, Scott D, Blekkenhorst LC (2020)Osteocalcin and its forms across the lifespan in adult men. Bone 130:115085. https://doi.org/10.1016/j.bone.2019.115085.
Luukinen H, Käkönen SM, Pettersson K, Koski K, Laippala P, Lövgren T, Kivelä SL, Väänänen HK (2000) Strong prediction of fractures among older adults by the ratio of carboxylated to total serum osteocalcin. J Bone Miner Res 15:2473–2478. https://doi.org/10.1359/jbmr.2000.15.12.2473
Vitale JA, Sansoni V, Faraldi M, Messina C, Verdelli C, Lombardi G, Corbetta S (2021) Circulating carboxylated osteocalcin correlates with skeletal muscle mass and risk of fall in postmenopausal osteoporotic women. Front Endocrinol 12. https://www.frontiersin.org/articles/10.3389/fendo.2021.669704. Accessed 7 Sep 2022
Takashi Y, Kawanami D (2022) The role of bone-derived hormones in glucose metabolism, diabetic kidney disease, and cardiovascular disorders. Int J Mol Sci 23:2376. https://doi.org/10.3390/ijms23042376
Article CAS PubMed PubMed Central Google Scholar
Rossi M, Battafarano G, Pepe J, Minisola S, Del Fattore A (2019) The endocrine function of osteocalcin regulated by bone resorption: a lesson from reduced and increased bone mass diseases. Int J Mol Sci 20:4502. https://doi.org/10.3390/ijms20184502
Article CAS PubMed PubMed Central Google Scholar
Wei J, Karsenty G (2015) An overview of the metabolic functions of osteocalcin. Rev Endocr Metab Disord 16:93–98. https://doi.org/10.1007/s11154-014-9307-7
Article CAS PubMed PubMed Central Google Scholar
Wei J, Hanna T, Suda N, Karsenty G, Ducy P (2014) Osteocalcin promotes β-cell proliferation during development and adulthood through Gprc6a. Diabetes 63:1021–1031. https://doi.org/10.2337/db13-0887
Article CAS PubMed PubMed Central Google Scholar
Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith CE, Hermo L, Suarez S, Roth BL, Ducy P, Karsenty G (2011) Endocrine regulation of male fertility by the skeleton. Cell 144:796–809. https://doi.org/10.1016/j.cell.2011.02.004
Article CAS PubMed PubMed Central Google Scholar
Mizokami A, Yasutake Y, Gao J, Matsuda M, Takahashi I, Takeuchi H, Hirata M (2013) Osteocalcin induces release of glucagon-like peptide-1 and thereby stimulates insulin secretion in mice. PLoS ONE 8
Mera P, Laue K, Ferron M, Confavreux C, Wei J, Galán-Díez M, Lacampagne A, Mitchell SJ, Mattison JA, Chen Y, Bacchetta J, Szulc P, Kitsis RN, de Cabo R, Friedman RA, Torsitano C, McGraw TE, Puchowicz M, Kurland I, Karsenty G (2016) Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metabol 23:1078–1092. https://doi.org/10.1016/j.cmet.2016.05.004
Otani T, Mizokami A, Hayashi Y, Gao J, Mori Y, Nakamura S, Takeuchi H, Hirata M (2015) Signaling pathway for adiponectin expression in adipocytes by osteocalcin. Cell Signal 27:532–544. https://doi.org/10.1016/j.cellsig.2014.12.018
Article CAS PubMed Google Scholar
Khrimian L, Obri A, Ramos-Brossier M, Rousseaud A, Moriceau S, Nicot A-S, Mera P, Kosmidis S, Karnavas T, Saudou F, Gao X-B, Oury F, Kandel E, Karsenty G (2017) Gpr158 mediates osteocalcin’s regulation of cognition. J Exp Med 214:2859–2873. https://doi.org/10.1084/jem.20171320
Article CAS PubMed PubMed Central Google Scholar
Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates β cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Nat Acad Sci 105:5266–5270. https://doi.org/10.1073/pnas.0711119105
Article ADS PubMed PubMed Central Google Scholar
Oury F, Khrimian L, Denny CA, Gardin A, Chamouni A, Goeden N, Huang YY, Lee H, Srinivas P, Gao XB, Suyama S, Langer T, John J, Mann TL, Horvath A, Bonnin G (2013) Maternal and offspring pools of osteocalcin influence brain development and functions. Cell 155:228–241. https://doi.org/10.1016/j.cell.2013.08.042.
Li Y, Gu Z, Wang J, Wang Y, Chen X, Dong B (2022) The emerging role of bone-derived hormones in diabetes mellitus and diabetic kidney disease. Front Endocrinol (Lausanne) 13
Burch J, Rice S, Yang H, Neilson A, Stirk L, Francis R, Holloway P, Selby P, Craig D (2014) Systematic review of the use of bone turnover markers for monitoring the response to osteoporosis treatment: the secondary prevention of fractures, and primary prevention of fractures in high-risk groups. Health Technol Assess 18:1–180. https://doi.org/10.3310/hta18110
Lee AJ, Hodges S, Eastell R (2000) Measurement of osteocalcin. Ann Clin Biochem 37:432–446. https://doi.org/10.1177/000456320003700402
Cui R, Su B, Sheng C, Cheng X, Yang P, Bu L, Li H, Wang J, Sheng H, Qu S (2014) Total osteocalcin in serum predicts testosterone level in male type 2 diabetes mellitus. Int J Clin Exp Med 7:1145–1149
PubMed PubMed Central Google Scholar
Glover SJ, Garnero P, Naylor K, Rogers A, Eastell R (2008) Establishing a reference range for bone turnover markers in young, healthy women. Bone 42:623–630. https://doi.org/10.1016/j.bone.2007.12.218
Article CAS PubMed Google Scholar
Adami S, Bianchi G, Brandi ML, Giannini S, Ortolani S, DiMunno O, Frediani B, Rossini M (2008) On behalf of the BONTURNO study group, determinants of bone turnover markers in healthy premenopausal women. Calcif Tissue Int 82:341–347. https://doi.org/10.1007/s00223-008-9126-5
Article CAS PubMed Google Scholar
Hannemann A, Friedrich N, Spielhagen C, Rettig R, Ittermann T, Nauck M, Wallaschofski H (2013) Reference intervals for serum osteocalcin concentrations in adult men and women from the study of health in Pomerania. BMC Endocrine Disord 13:11. https://doi.org/10.1186/1472-6823-13-11
Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469. https://doi.org/10.1016/j.cell.2007.05.047
Article CAS PubMed PubMed Central Google Scholar
Gundberg CM, Nieman SD, Abrams S, Rosen H (1998) Vitamin K status and bone health: an analysis of methods for determination of undercarboxylated osteocalcin1. J Clin Endocrinol Metabol 83:3258–3266. https://doi.org/10.1210/jcem.83.9.5126
Lacombe J, Al Rifai O, Loter L, Moran T, Turcotte AF, Grenier-Larouche T, Tchernof A, Biertho L, Carpentier AC, Prud’homme D, Rabasa-Lhoret R, Karsenty G, Gagnon C, Jiang W, Ferron M (2020) Measurement of bioactive osteocalcin in humans using a novel immunoassay reveals association with glucose metabolism and β-cell function. Am J Physiol Endocrinol Metab 318:E381–E391. https://doi.org/10.1152/ajpendo.00321.2019.
Komori T (2020) Functions of osteocalcin in bone, pancreas, testis, and muscle. Int J Mol Sci 21:7513. https://doi.org/10.3390/ijms21207513
Article CAS PubMed PubMed Central Google Scholar
Wang JS, Mazur CM, Wein MN (2021) Sclerostin and osteocalcin: candidate bone-produced hormones. Front Endocrinol (Lausanne) 12
Liu Y, Liu X, Lewis JR, Brock K, Brennan-Speranza TC, Teixeira-Pinto A (2019) Relationship between serum osteocalcin/undercarboxylated osteocalcin and type 2 diabetes: a systematic review/meta-analysis study protocol. BMJ Open 9
Rubert M, De la Piedra C, Rubert M, De la Piedra C (2020) La osteocalcina: de marcador de formación ósea a hormona; y el hueso, un órgano endocrino. Revista de Osteoporosis y Metabolismo Mineral 12:146–151. https://doi.org/10.4321/s1889-836x2020000400007
UniProt Consortium (2023) UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Res 51:D523–D531. https://doi.org/10.1093/nar/gkac1052
Zoch ML, Clemens TL, Riddle RC (2016) New insights into the biology of osteocalcin. Bone 82:42–49. https://doi.org/10.1016/j.bone.2015.05.046
Article CAS PubMed Google Scholar
Al Rifai O, Chow J, Lacombe J, Julien C, Faubert D, Susan-Resiga D, Essalmani R, Creemers JW, Seidah NG, Ferron M (2017) Proprotein convertase furin regulates osteocalcin and bone endocrine function. J Clin Invest 127:4104–4117. https://doi.org/10.1172/JCI93437.
Lambert LJ, Challa AK, Niu A, Zhou L, Tucholski J, Johnson MS, Nagy TR, Eberhardt AW, Estep PN, Kesterson RA, Grams JM (2016) Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology. Dis Models Mechan 9:1169–1179. https://doi.org/10.1242/dmm.025247
Rahman S, Oberdorf A, Montecino M, Tanhauser SM, Lian JB, Stein GS, Laipis PJ, Stein JL (1993) Multiple copies of the bone-specific osteocalcin gene in mouse and rat. Endocrinology 133:3050–3053. https://doi.org/10.1210/endo.133.6.8243336
Article CAS PubMed Google Scholar
Desbois C, Hogue DA, Karsenty G (1994) The mouse osteocalcin gene cluster contains three genes with two separate spatial and temporal patterns of expression. J Biol Chem 269:1183–1190
Article CAS PubMed Google Scholar
Sato M, Tada N (1995) Preferential expression of osteocalcin-related protein mRNA in gonadal tissues of male mice. Biochem Biophys Res Commun 215:412–421. https://doi.org/10.1006/bbrc.1995.2480
Article MathSciNet CAS PubMed Google Scholar
Komori T (2019) Regulation of proliferation, differentiation and functions of osteoblasts by runx 2. Int J Mol Sci 20:E1694. https://doi.org/10.3390/ijms20071694
Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao Y-H, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764. https://doi.org/10.1016/S0092-8674(00)80258-5
Comments (0)