Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909. https://doi.org/10.1016/s0896-6273(03)00568-3
Article CAS PubMed Google Scholar
Videira PAQ, Castro-Caldas M (2018) Linking Glycation and glycosylation with inflammation and mitochondrial dysfunction in Parkinson’s disease. Front Neurosci 12:381. https://doi.org/10.3389/fnins.2018.00381
Article PubMed PubMed Central Google Scholar
Kannarkat GT, Boss JM, Tansey MG (2013) The role of innate and adaptive immunity in Parkinson’s disease. J Parkinsons Dis 3:493–514. https://doi.org/10.3233/JPD-130250
Article PubMed PubMed Central Google Scholar
Rosa AI, Duarte-Silva S, Silva-Fernandes A, Nunes MJ, Carvalho AN, Rodrigues E, Gama MJ, Rodrigues CMP, Maciel P, Castro-Caldas M (2018) Tauroursodeoxycholic acid improves motor symptoms in a mouse model of Parkinson’s disease. Mol Neurobiol 55:9139–9155. https://doi.org/10.1007/s12035-018-1062-4
Article CAS PubMed Google Scholar
Mendes MO, Rosa AI, Carvalho AN, Nunes MJ, Dionisio P, Rodrigues E, Costa D, Duarte-Silva S, Maciel P, Rodrigues CMP et al (2019) Neurotoxic effects of MPTP on mouse cerebral cortex: modulation of neuroinflammation as a neuroprotective strategy. Mol Cell Neurosci 96:1–9. https://doi.org/10.1016/j.mcn.2019.01.003
Article CAS PubMed Google Scholar
Linnartz-Gerlach B, Mathews M, Neumann H (2014) Sensing the neuronal glycocalyx by glial sialic acid binding immunoglobulin-like lectins. Neurosci 275:113–124. https://doi.org/10.1016/j.neuroscience.2014.05.061
Cho BG, Veillon L, Mechref Y (2019) N-Glycan profile of cerebrospinal fluids from Alzheimer’s disease patients using liquid chromatography with mass spectrometry. J Proteome Res 18:3770–3779. https://doi.org/10.1021/acs.jproteome.9b00504
Article CAS PubMed PubMed Central Google Scholar
Costa J, Streich L, Pinto S, Pronto-Laborinho A, Nimtz M, Conradt HS, de Carvalho M (2019) Exploring cerebrospinal fluid IgG N-glycosylation as potential biomarker for amyotrophic lateral sclerosis. Mol Neurobiol 56:5729–5739. https://doi.org/10.1007/s12035-019-1482-9
Article CAS PubMed Google Scholar
Schneider JS, Singh G (2022) Altered expression of glycobiology-related genes in Parkinson’s disease brain. Front Mol Neurosci 15:1078854. https://doi.org/10.3389/fnmol.2022.1078854
Article CAS PubMed PubMed Central Google Scholar
Wilkinson H, Thomsson KA, Rebelo AL, Hilliard M, Pandit A, Rudd PM, Karlsson NG, Saldova R (2021) The O-glycome of human nigrostriatal tissue and its alteration in Parkinson’s disease. J Proteome Res 20:3913–3924. https://doi.org/10.1021/acs.jproteome.1c00219
Article CAS PubMed PubMed Central Google Scholar
Jin F, Wang F (2020) The physiological and pathological roles and applications of Sialyl Lewis X, a common carbohydrate ligand of the three selectins. Glycoconj J 37:277–291. https://doi.org/10.1007/s10719-020-09912-4
Article CAS PubMed Google Scholar
Mondal N, Dykstra B, Lee J, Ashline DJ, Reinhold VN, Rossi DJ, Sackstein R (2018) Distinct human alpha(1,3)-fucosyltransferases drive Lewis-X/Sialyl Lewis-X assembly in human cells. J Biol Chem 293:7300–7314. https://doi.org/10.1074/jbc.RA117.000775
Article CAS PubMed PubMed Central Google Scholar
Sperandio M (2006) Selectins and glycosyltransferases in leukocyte rolling in vivo. FEBS J 273:4377–4389. https://doi.org/10.1111/j.1742-4658.2006.05437.x
Article CAS PubMed Google Scholar
Silva Z, Tong Z, Cabral MG, Martins C, Castro R, Reis C, Trindade H, Konstantopoulos K, Videira PA (2011) Sialyl LewisX-dependent binding of human monocyte-derived dendritic cells to selectins. Biochem Biophys Res Commun 409:459–464. https://doi.org/10.1016/j.bbrc.2011.05.026
Article CAS PubMed PubMed Central Google Scholar
Nishihara S, Iwasaki H, Nakajima K, Togayachi A, Ikehara Y, Kudo T, Kushi Y, Furuya A, Shitara K, Narimatsu H (2003) Alpha 1,3-fucosyltransferase IX (Fut9) determines Lewis X expression in brain. Glycobiol 13:445–455. https://doi.org/10.1093/glycob/cwg048
Groux-Degroote S, Cavdarli S, Uchimura K, Allain F, Delannoy P (2020) Glycosylation changes in inflammatory diseases. Adv Protein Chem Struct Biol 119:111–156. https://doi.org/10.1016/bs.apcsb.2019.08.008
Article CAS PubMed Google Scholar
Carrascal MA, Silva M, Ferreira JA, Azevedo R, Ferreira D, Silva AMN, Ligeiro D, Santos LL, Sackstein R, Videira PA (2018) A functional glycoproteomics approach identifies CD13 as a novel E-selectin ligand in breast cancer. Biochim Biophys Acta 1862:2069–2080. https://doi.org/10.1016/j.bbagen.2018.05.013
Hidalgo A, Peired AJ, Wild M, Vestweber D, Frenette PS (2007) Complete identification of E-selectin ligands on neutrophils reveals distinct functions of PSGL-1, ESL-1, and CD44. Immunity 26:477–489. https://doi.org/10.1016/j.immuni.2007.03.011
Article CAS PubMed PubMed Central Google Scholar
Jassam SA, Maherally Z, Ashkan K, Pilkington GJ, Fillmore HL (2019) Fucosyltransferase 4 and 7 mediates adhesion of non-small cell lung cancer cells to brain-derived endothelial cells and results in modification of the blood-brain-barrier: in vitro investigation of CD15 and CD15s in lung-to-brain metastasis. J Neurooncol 143:405–415. https://doi.org/10.1007/s11060-019-03188-x
Article CAS PubMed PubMed Central Google Scholar
Satoh J, Kim SU (1994) Differential expression of Lewis(x) and Sialyl-Lewis(x) antigens in fetal human neural cells in culture. J Neurosci Res 37:466–474. https://doi.org/10.1002/jnr.490370406
Article CAS PubMed Google Scholar
Parry S, Ledger V, Tissot B, Haslam SM, Scott J, Morris HR, Dell A (2007) Integrated mass spectrometric strategy for characterizing the glycans from glycosphingolipids and glycoproteins: direct identification of Sialyl Le(x) in mice. Glycobiol 17:646–654. https://doi.org/10.1093/glycob/cwm024
Castro-Caldas M, Neves Carvalho A, Peixeiro I, Rodrigues E, Lechner MC, Gama MJ (2009) GSTpi expression in MPTP-induced dopaminergic neurodegeneration of C57BL/6 mouse midbrain and striatum. Journal of molecular neuroscience : MN 38:114–127. https://doi.org/10.1007/s12031-008-9141-z
Article CAS PubMed Google Scholar
Tobon-Velasco JC, Cuevas E, Torres-Ramos MA (2014) Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS Neurol Disord: Drug Targets 13:1615–1626. https://doi.org/10.2174/1871527313666140806144831
Article CAS PubMed Google Scholar
Li J, Liu D, Sun L, Lu Y, Zhang Z (2012) Advanced glycation end products and neurodegenerative diseases: mechanisms and perspective. J Neurol Sci 317:1–5. https://doi.org/10.1016/j.jns.2012.02.018
Article ADS CAS PubMed Google Scholar
Teismann P, Sathe K, Bierhaus A, Leng L, Martin HL, Bucala R, Weigle B, Nawroth PP, Schulz JB (2012) Receptor for advanced glycation endproducts (RAGE) deficiency protects against MPTP toxicity. Neurobiol Aging 33:2478–2490. https://doi.org/10.1016/j.neurobiolaging.2011.12.006
Article CAS PubMed PubMed Central Google Scholar
Goncalves CA, Rodrigues L, Bobermin LD, Zanotto C, Vizuete A, Quincozes-Santos A, Souza DO, Leite MC (2018) Glycolysis-derived compounds from astrocytes that modulate synaptic communication. Front Neurosci 12:1035. https://doi.org/10.3389/fnins.2018.01035
Nunes MJ, Carvalho AN, Sa-Lemos C, Colaco M, Cervenka I, Ciraci V, Santos SG, Ribeiro MM, Castanheira M, Jannig PR et al (2023) Sustained PGC-1alpha2 or PGC-1alpha3 expression induces astrocyte dysfunction and degeneration. Eur J Cell Biol 103:151377. https://doi.org/10.1016/j.ejcb.2023.151377
Article CAS PubMed Google Scholar
Popiolek-Barczyk K, Ciechanowska A, Ciapala K, Pawlik K, Oggioni M, Mercurio D, De Simoni MG, Mika J (2020) The CCL2/CCL7/CCL12/CCR2 pathway is substantially and persistently upregulated in mice after traumatic brain injury, and CCL2 modulates the complement system in microglia. Mol Cell Probes 54:101671. https://doi.org/10.1016/j.mcp.2020.101671
Article CAS PubMed Google Scholar
Zhang X, Zhou JY, Chin MH, Schepmoes AA, Petyuk VA, Weitz KK, Petritis BO, Monroe ME, Camp DG, Wood SA et al (2010) Region-specific protein abundance changes in the brain of MPTP-induced Parkinson’s disease mouse model. J Proteome Res 9:1496–1509. https://doi.org/10.1021/pr901024z
Article CAS PubMed PubMed Central Google Scholar
Brito C, Kandzia S, Graca I, Conradt HS, Costa J (2008) Human fucosyltransferase IX: specificity towards N-linked glycoproteins and relevance of the cytoplasmic domain in intra-Golgi localization. Biochimie 90:1279–1290. https://doi.org/10.1016/j.biochi.2008.03.002
Article CAS PubMed Google Scholar
Moreira S, Fonseca I, Nunes MJ, Rosa A, Lemos L, Rodrigues E, Carvalho AN, Outeiro TF, Rodrigues CMP, Gama MJ et al (2017) Nrf2 activation by tauroursodeoxycholic acid in experimental models of Parkinson’s disease. Exp Neurol 295:77–87. https://doi.org/10.1016/j.expneurol.2017.05.009
Comments (0)