Spinal cord abnormal autophagy and mitochondria energy metabolism are modified by swim training in SOD1-G93A mice

Guo C, Sun L, Chen X, Zhang D (2013) Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 8(21):2003–2014

CAS  PubMed  PubMed Central  Google Scholar 

Ramesh N, Pandey UB (2017) Autophagy dysregulation in als: when protein aggregates get out of hand. Front Mol Neurosci 10:263

Article  PubMed  PubMed Central  Google Scholar 

Shi Y, Lin S, Staats KA, Li Y, Chang WH, Hung ST et al (2018) Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat Med 24(3):313–325

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mackenzie IR, Neumann M (2016) Molecular neuropathology of frontotemporal dementia: insights into disease mechanisms from postmortem studies. J Neurochem 138(Suppl 1):54–70

Article  CAS  PubMed  Google Scholar 

Brettschneider J, Arai K, Del Tredici K, Toledo JB, Robinson JL, Lee EB et al (2014) TDP-43 pathology and neuronal loss in amyotrophic lateral sclerosis spinal cord. Acta Neuropathol 128(3):423–437

Article  CAS  PubMed  PubMed Central  Google Scholar 

Villena JA (2015) New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS J 282(4):647–672

Article  CAS  PubMed  Google Scholar 

Choi JK, Kustermann E, Dedeoglu A, Jenkins BG (2009) Magnetic resonance spectroscopy of regional brain metabolite markers in FALS mice and the effects of dietary creatine supplementation. Eur J Neurosci 30(11):2143–2150

Article  PubMed  PubMed Central  Google Scholar 

Nagel G, Peter RS, Rosenbohm A, Koenig W, Dupuis L, Rothenbacher D et al (2020) Association of insulin-like growth factor 1 concentrations with risk for and prognosis of amyotrophic lateral sclerosis - results from the ALS Registry Swabia. Sci Rep 10(1):736

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Wen D, Cui C, Duan W, Wang W, Wang Y, Liu Y et al (2019) The role of insulin-like growth factor 1 in ALS cell and mouse models: a mitochondrial protector. Brain Res Bull 144:1–13

Article  CAS  PubMed  Google Scholar 

Cirulli ET, Lasseigne BN, Petrovski S, Sapp PC, Dion PA, Leblond CS et al (2015) Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347(6229):1436–1441

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140(3):313–326

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ji LL, Yeo D (2019) Mitochondrial dysregulation and muscle disuse atrophy. F1000Res 8

Gil-Bea FJ, Aldanondo G, Lasa-Fernandez H, Lopez de Munain A, Vallejo-Illarramendi A (2017) Insights into the mechanisms of copper dyshomeostasis in amyotrophic lateral sclerosis. Expert Rev Mol Med 19:e7

Article  PubMed  Google Scholar 

Valnot I, Osmond S, Gigarel N, Mehaye B, Amiel J, Cormier-Daire V et al (2000) Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy. Am J Hum Genet 67(5):1104–1109

CAS  PubMed  PubMed Central  Google Scholar 

Lynch SM, Colon W (2006) Dominant role of copper in the kinetic stability of Cu/Zn superoxide dismutase. Biochem Biophys Res Commun 340(2):457–461

Article  CAS  PubMed  Google Scholar 

Tiwari A, Liba A, Sohn SH, Seetharaman SV, Bilsel O, Matthews CR et al (2009) Metal deficiency increases aberrant hydrophobicity of mutant superoxide dismutases that cause amyotrophic lateral sclerosis. J Biol Chem 284(40):27746–27758

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu X, Wu N, Yang W, Sun J, Yan K, Wu J (2019) OGDH promotes the progression of gastric cancer by regulating mitochondrial bioenergetics and Wnt/beta-catenin signal pathway. Onco Targets Ther 12:7489–7500

Article  CAS  PubMed  PubMed Central  Google Scholar 

McLain AL, Szweda PA, Szweda LI (2011) alpha-Ketoglutarate dehydrogenase: a mitochondrial redox sensor. Free Radic Res 45(1):29–36

Article  CAS  PubMed  Google Scholar 

Deforges S, Branchu J, Biondi O, Grondard C, Pariset C, Lecolle S et al (2009) Motoneuron survival is promoted by specific exercise in a mouse model of amyotrophic lateral sclerosis. J Physiol 587(Pt 14):3561–3572

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flis DJ, Dzik K, Kaczor JJ, Halon-Golabek M, Antosiewicz J, Wieckowski MR et al (2018) Swim training modulates skeletal muscle energy metabolism, oxidative stress, and mitochondrial cholesterol content in amyotrophic lateral sclerosis mice. Oxid Med Cell Longev 2018:5940748

Article  PubMed  PubMed Central  Google Scholar 

Flis DJ, Dzik K, Kaczor JJ, Cieminski K, Halon-Golabek M, Antosiewicz J et al (2019) Swim training modulates mouse skeletal muscle energy metabolism and ameliorates reduction in grip strength in a mouse model of amyotrophic lateral sclerosis. Int J Mol Sci 20(2)

Cieminski K, Flis DJ, Dzik K, Kaczor JJ, Czyrko E, Halon-Golabek M et al (2021) Swim training affects Akt signaling and ameliorates loss of skeletal muscle mass in a mouse model of amyotrophic lateral sclerosis. Sci Rep 11(1):20899

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Cieminski K, Flis DJ, Dzik KP, Kaczor JJ, Wieckowski MR, Antosiewicz J et al (2022) Swim training affects on muscle lactate metabolism, nicotinamide adenine dinucleotides concentration, and the activity of NADH shuttle enzymes in a mouse model of amyotrophic lateral sclerosis. Int J Mol Sci 23(19):11504

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dzik KP, Flis DJ, Bytowska ZK, Karnia MJ, Ziolkowski W, Kaczor JJ (2021) Swim training ameliorates hyperlocomotion of ALS mice and increases glutathione peroxidase activity in the spinal cord. Int J Mol Sci 22(21)

Kemball CC, Alirezaei M, Flynn CT, Wood MR, Harkins S, Kiosses WB et al (2010) Coxsackievirus infection induces autophagy-like vesicles and megaphagosomes in pancreatic acinar cells in vivo. J Virol 84(23):12110–12124

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakano T, Nakaso K, Nakashima K, Ohama E (2004) Expression of ubiquitin-binding protein p62 in ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis with dementia: analysis of five autopsy cases with broad clinicopathological spectrum. Acta Neuropathol 107(4):359–364

Article  CAS  PubMed  Google Scholar 

Parkinson N, Ince PG, Smith MO, Highley R, Skibinski G, Andersen PM et al (2006) ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology 67(6):1074–1077

Article  CAS  PubMed  Google Scholar 

Mizuno Y, Amari M, Takatama M, Aizawa H, Mihara B, Okamoto K (2006) Immunoreactivities of p62, an ubiqutin-binding protein, in the spinal anterior horn cells of patients with amyotrophic lateral sclerosis. J Neurol Sci 249(1):13–18

Article  CAS  PubMed  Google Scholar 

Gal J, Strom AL, Kilty R, Zhang F, Zhu H (2007) p62 accumulates and enhances aggregate formation in model systems of familial amyotrophic lateral sclerosis. J Biol Chem 282(15):11068–11077

Article  CAS  PubMed  Google Scholar 

Benito-Cuesta I, Diez H, Ordonez L, Wandosell F (2017) Assessment of autophagy in neurons and brain tissue. Cells 6(3)

Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW (2004) Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol 24(18):8055–8068

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korolchuk VI, Mansilla A, Menzies FM, Rubinsztein DC (2009) Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol Cell 33(4):517–527

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hadano S, Mitsui S, Pan L, Otomo A, Kubo M, Sato K et al (2016) Functional links between SQSTM1 and ALS2 in the pathogenesis of ALS: cumulative impact on the protection against mutant SOD1-mediated motor dysfunction in mice. Hum Mol Genet 25(15):3321–3340

Article  CAS  PubMed  Google Scholar 

Mitsui S, Otomo A, Nozaki M, Ono S, Sato K, Shirakawa R et al (2018) Systemic overexpression of SQSTM1/p62 accelerates disease onset in a SOD1(H46R)-expressing ALS mouse model. Mol Brain 11(1):30

Article  PubMed  PubMed Central  Google Scholar 

Poon A, Saini H, Sethi S, O’Sullivan GA, Plun-Favreau H, Wray S et al (2021) The role of SQSTM1 (p62) in mitochondrial function and clearance in human cortical neurons. Stem Cell Reports 16(5):1276–1289

Heo JM, Ordureau A, Paulo JA, Rinehart J, Harper JW (2015) The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol Cell 60(1):7–20

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kiriyama Y, Nochi H (2015) The function of autophagy in neurodegenerative diseases. Int J Mol Sci 16(11):26797–26812

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif