Miyatsuka T (2016) Chronology of endocrine differentiation and beta-cell neogenesis. Endocr J 63(3):205–211. https://doi.org/10.1507/endocrj.EJ15-0601
Article CAS PubMed Google Scholar
Gradwohl G, Dierich A, LeMeur M, Guillemot F (2000) neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A 97(4):1607–1611. https://doi.org/10.1073/pnas.97.4.1607
Article CAS PubMed PubMed Central Google Scholar
Miyatsuka T, Li Z, German MS (2009) Chronology of islet differentiation revealed by temporal cell labeling. Diabetes 58(8):1863–1868. https://doi.org/10.2337/db09-0390
Article CAS PubMed PubMed Central Google Scholar
Raskin P, Unger RH (1978) Hyperglucagonemia and its suppression. Importance in the metabolic control of diabetes. N Engl J Med 299(9):433–436. https://doi.org/10.1056/nejm197808312990901
Article CAS PubMed Google Scholar
D’Alessio D (2011) The role of dysregulated glucagon secretion in type 2 diabetes. Diabetes Obes Metab 13(Suppl 1):126–132. https://doi.org/10.1111/j.1463-1326.2011.01449.x
Article CAS PubMed Google Scholar
Unger RH, Cherrington AD (2012) Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover. J Clin Invest 122(1):4–12. https://doi.org/10.1172/JCI60016
Article CAS PubMed PubMed Central Google Scholar
Thorel F, Nepote V, Avril I et al (2010) Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 464(7292):1149–1154. https://doi.org/10.1038/nature08894
Article CAS PubMed PubMed Central Google Scholar
Matsuoka TA, Kawashima S, Miyatsuka T et al (2017) Mafa enables Pdx1 to effectively convert pancreatic islet progenitors and committed islet alpha-cells into beta-cells in vivo. Diabetes 66(5):1293–1300. https://doi.org/10.2337/db16-0887
Article CAS PubMed PubMed Central Google Scholar
Xiao X, Guo P, Shiota C et al (2018) Endogenous reprogramming of alpha cells into beta cells, induced by viral gene therapy, reverses autoimmune diabetes. Cell Stem Cell 22(1):78-90.e74. https://doi.org/10.1016/j.stem.2017.11.020
Article CAS PubMed PubMed Central Google Scholar
Cigliola V, Ghila L, Thorel F et al (2018) Pancreatic islet-autonomous insulin and smoothened-mediated signalling modulate identity changes of glucagon+ α-cells. Nat Cell Biol 20(11):1267–1277. https://doi.org/10.1038/s41556-018-0216-y
Article CAS PubMed PubMed Central Google Scholar
Furuyama K, Chera S, van Gurp L et al (2019) Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells. Nature 567(7746):43–48. https://doi.org/10.1038/s41586-019-0942-8
Article CAS PubMed PubMed Central Google Scholar
Aida T, Chiyo K, Usami T et al (2015) Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice. Genome Biol 16(1):87. https://doi.org/10.1186/s13059-015-0653-x
Article CAS PubMed PubMed Central Google Scholar
Shiota C, Prasadan K, Guo P, Fusco J, Xiao X, Gittes GK (2017) Gcg CreERT2 knockin mice as a tool for genetic manipulation in pancreatic alpha cells. Diabetologia 60(12):2399–2408. https://doi.org/10.1007/s00125-017-4425-x
Article CAS PubMed PubMed Central Google Scholar
Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45(9):593–605. https://doi.org/10.1002/dvg.20335
Article CAS PubMed Google Scholar
Lee CS, Perreault N, Brestelli JE, Kaestner KH (2002) Neurogenin 3 is essential for the proper specification of gastric enteroendocrine cells and the maintenance of gastric epithelial cell identity. Genes Dev 16(12):1488–1497. https://doi.org/10.1101/gad.985002
Article CAS PubMed PubMed Central Google Scholar
Brand CL, Rolin B, Jørgensen PN, Svendsen I, Kristensen JS, Holst JJ (1994) Immunoneutralization of endogenous glucagon with monoclonal glucagon antibody normalizes hyperglycaemia in moderately streptozotocin-diabetic rats. Diabetologia 37(10):985–993. https://doi.org/10.1007/bf00400461
Article CAS PubMed Google Scholar
Sørensen H, Brand CL, Neschen S et al (2006) Immunoneutralization of endogenous glucagon reduces hepatic glucose output and improves long-term glycemic control in diabetic ob/ob mice. Diabetes 55(10):2843–2848. https://doi.org/10.2337/db06-0222
Article CAS PubMed Google Scholar
Vajda EG, Logan D, Lasseter K et al (2017) Pharmacokinetics and pharmacodynamics of single and multiple doses of the glucagon receptor antagonist LGD-6972 in healthy subjects and subjects with type 2 diabetes mellitus. Diabetes Obes Metab 19(1):24–32. https://doi.org/10.1111/dom.12752
Article CAS PubMed Google Scholar
Pettus JH, D’Alessio D, Frias JP et al (2020) Efficacy and safety of the glucagon receptor antagonist RVT-1502 in type 2 diabetes uncontrolled on metformin monotherapy: a 12-week dose-ranging study. Diabetes Care 43(1):161–168. https://doi.org/10.2337/dc19-1328
Article CAS PubMed Google Scholar
Hayashi Y, Yamamoto M, Mizoguchi H et al (2009) Mice deficient for glucagon gene-derived peptides display normoglycemia and hyperplasia of islet -cells but not of intestinal L-cells. Mol Endocrinol 23(12):1990–1999. https://doi.org/10.1210/me.2009-0296
Article CAS PubMed PubMed Central Google Scholar
Terskikh A, Fradkov A, Ermakova G et al (2000) “Fluorescent timer”: protein that changes color with time. Science 290(5496):1585–1588. https://doi.org/10.1126/science.290.5496.1585
Article CAS PubMed Google Scholar
Miyatsuka T, Matsuoka TA, Sasaki S et al (2014) Chronological analysis with fluorescent timer reveals unique features of newly generated β-cells. Diabetes 63:3388–3393. https://doi.org/10.2337/db13-1312/-/DC1
Article CAS PubMed PubMed Central Google Scholar
Sasaki S, Lee MYY, Wakabayashi Y et al (2022) Spatial and transcriptional heterogeneity of pancreatic beta cell neogenesis revealed by a time-resolved reporter system. Diabetologia 65(5):811–828. https://doi.org/10.1007/s00125-022-05662-0
Article CAS PubMed Google Scholar
Zhou J, Lin J, Zhou C, Deng X, Xia B (2011) Cytotoxicity of red fluorescent protein DsRed is associated with the suppression of Bcl-xL translation. FEBS Lett 585(5):821–827. https://doi.org/10.1016/j.febslet.2011.02.013
Article CAS PubMed Google Scholar
Chen TH, Chen MR, Chen TY et al (2016) Cardiac fibrosis in mouse expressing DsRed tetramers involves chronic autophagy and proteasome degradation insufficiency. Oncotarget 7(34):54274–54289. https://doi.org/10.18632/oncotarget.11026
Article PubMed PubMed Central Google Scholar
Mizuguchi H, Xu Z, Ishii-Watabe A, Uchida E, Hayakawa T (2000) IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther 1(4):376–382. https://doi.org/10.1006/mthe.2000.0050
Article CAS PubMed Google Scholar
Schwitzgebel VM, Scheel DW, Conners JR et al (2000) Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 127(16):3533–3542. https://doi.org/10.1242/dev.127.16.3533
Article CAS PubMed Google Scholar
Hussain MA, Lee J, Miller CP, Habener JF (1997) POU domain transcription factor brain 4 confers pancreatic alpha-cell-specific expression of the proglucagon gene through interaction with a novel proximal promoter G1 element. Mol Cell Biol 17(12):7186–7194. https://doi.org/10.1128/mcb.17.12.7186
Article CAS PubMed PubMed Central Google Scholar
Collombat P, Mansouri A, Hecksher-Sorensen J et al (2003) Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev 17(20):2591–2603. https://doi.org/10.1101/gad.269003
Article CAS PubMed PubMed Central Google Scholar
Artner I, Le Lay J, Hang Y et al (2006) MafB: an activator of the glucagon gene expressed in developing islet alpha- and beta-cells. Diabetes 55(2):297–304. https://doi.org/10.2337/diabetes.55.02.06.db05-0946
Article CAS PubMed Google Scholar
Petri A, Ahnfelt-Ronne J, Frederiksen KS et al (2006) The effect of neurogenin3 deficiency on pancreatic gene expression in embryonic mice. J Mol Endocrinol 37(2):301–316. https://doi.org/10.1677/jme.1.02096
Comments (0)