Immune cells and hypertension

Wang Z, et al. Status of hypertension in China: results from the China hypertension survey, 2012-2015. Circulation. 2018;137(22):2344–56.

Article  PubMed  Google Scholar 

Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res. 2014;114(11):1804–14.

Article  PubMed  CAS  Google Scholar 

Te Riet L, et al. Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res. 2015;116(6):960–75.

Article  Google Scholar 

Rodriguez-Iturbe B, Pons H, Johnson RJ. Role of the immune system in hypertension. Physiol Rev. 2017;97(3):1127–64.

Article  PubMed  PubMed Central  CAS  Google Scholar 

McCarthy CG, et al. Innate immune cells and hypertension: neutrophils and neutrophil extracellular traps (NETs). Compr Physiol. 2021;11(1):1575–89.

Article  PubMed  PubMed Central  Google Scholar 

Mikolajczyk TP, Guzik TJ. Adaptive immunity in hypertension. Curr Hypertens Rep. 2019;21(9):68.

Article  PubMed  PubMed Central  Google Scholar 

Gomolak JR, Didion SP. A role for innate immunity in the development of hypertension. Med Hypotheses. 2014;83(6):640–3.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Shah KH, et al. Myeloid suppressor cells accumulate and regulate blood pressure in hypertension. Circ Res. 2015;117(10):858–69.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chiasson VL, et al. Myeloid-derived suppressor cells ameliorate cyclosporine A-induced hypertension in mice. Hypertension. 2018;71(1):199–207.

Article  PubMed  CAS  Google Scholar 

Gabrilovich DI. Myeloid-derived suppressor cells. Cancer Immunol Res. 2017;5(1):3–8.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Florentin J, et al. Inflammatory macrophage expansion in pulmonary hypertension depends upon mobilization of blood-borne monocytes. J Immunol. 2018;200(10):3612–25.

Article  PubMed  CAS  Google Scholar 

Ishibashi M, et al. Critical role of monocyte chemoattractant protein-1 receptor CCR2 on monocytes in hypertension-induced vascular inflammation and remodeling. Circ Res. 2004;94(9):1203–10.

Article  PubMed  CAS  Google Scholar 

Mervaala EM, et al. Monocyte infiltration and adhesion molecules in a rat model of high human renin hypertension. Hypertension. 1999;33(1 Pt 2):389–95.

Article  PubMed  CAS  Google Scholar 

Haller H, et al. Monocyte infiltration and c-fms expression in hearts of spontaneously hypertensive rats. Hypertension. 1995;25(1):132–8.

Article  PubMed  CAS  Google Scholar 

Kossmann S, et al. Inflammatory monocytes determine endothelial nitric-oxide synthase uncoupling and nitro-oxidative stress induced by angiotensin II. J Biol Chem. 2014;289(40):27540–50.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wenzel P, et al. Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation. 2011;124(12):1370–81.

Article  PubMed  CAS  Google Scholar 

Justin Rucker A, Crowley SD. The role of macrophages in hypertension and its complications. Pflugers Arch. 2017;469(3-4):419–30.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu Y, et al. Quantitation of perivascular monocytes and macrophages around cerebral blood vessels of hypertensive and aged rats. J Cereb Blood Flow Metab. 1994;14(2):348–52.

Article  PubMed  CAS  Google Scholar 

Harwani SC. Macrophages under pressure: the role of macrophage polarization in hypertension. Transl Res. 2018;191:45–63.

Article  PubMed  CAS  Google Scholar 

Bush E, et al. CC chemokine receptor 2 is required for macrophage infiltration and vascular hypertrophy in angiotensin II-induced hypertension. Hypertension. 2000;36(3):360–3.

Article  PubMed  CAS  Google Scholar 

De Ciuceis C, et al. Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II-infused macrophage colony-stimulating factor-deficient mice: evidence for a role in inflammation in angiotensin-induced vascular injury. Arterioscler Thromb Vasc Biol. 2005;25(10):2106–13.

Article  PubMed  Google Scholar 

Ko EA, et al. Resistance artery remodeling in deoxycorticosterone acetate-salt hypertension is dependent on vascular inflammation: evidence from m-CSF-deficient mice. Am J Physiol Heart Circ Physiol. 2007;292(4):H1789–95.

Article  PubMed  CAS  Google Scholar 

Liao TD, et al. Role of inflammation in the development of renal damage and dysfunction in angiotensin II-induced hypertension. Hypertension. 2008;52(2):256–63.

Article  PubMed  CAS  Google Scholar 

Neumann P, Gertzberg N, Johnson A. TNF-alpha induces a decrease in eNOS promoter activity. Am J Physiol Lung Cell Mol Physiol. 2004;286(2):L452–9.

Article  PubMed  CAS  Google Scholar 

Sriramula S, et al. Involvement of tumor necrosis factor-alpha in angiotensin II-mediated effects on salt appetite, hypertension, and cardiac hypertrophy. Hypertension. 2008;51(5):1345–51.

Article  PubMed  CAS  Google Scholar 

Zhang WC, et al. High salt primes a specific activation state of macrophages, M(Na). Cell Res. 2015;25(8):893–910.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Binger KJ, et al. High salt reduces the activation of IL-4- and IL-13-stimulated macrophages. J Clin Invest. 2015;125(11):4223–38.

Article  PubMed  PubMed Central  Google Scholar 

Mouton AJ, et al. Obesity, hypertension, and cardiac dysfunction: novel roles of immunometabolism in macrophage activation and inflammation. Circ Res. 2020;126(6):789–806.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Moore JP, et al. M2 macrophage accumulation in the aortic wall during angiotensin II infusion in mice is associated with fibrosis, elastin loss, and elevated blood pressure. Am J Physiol Heart Circ Physiol. 2015;309(5):H906–17.

Article  PubMed  CAS  Google Scholar 

Barbaro NR, et al. Dendritic cell amiloride-sensitive channels mediate sodium-induced inflammation and hypertension. Cell Rep. 2017;21(4):1009–20.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kirabo A, et al. DC isoketal-modified proteins activate T cells and promote hypertension. J Clin Invest. 2014;124(10):4642–56.

Article  PubMed  PubMed Central  Google Scholar 

Vinh A, et al. Inhibition and genetic ablation of the B7/CD28 T-cell costimulation axis prevents experimental hypertension. Circulation. 2010;122(24):2529–37.

Article  PubMed  PubMed Central  Google Scholar 

Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Front Physiol. 2018;9:113.

Article  PubMed  PubMed Central  Google Scholar 

Araos P, Figueroa S, Amador CA. The role of neutrophils in hypertension. Int J Mol Sci. 2020;21(22)

Jhuang YH, et al. Neutrophil to lymphocyte ratio as predictor for incident hypertension: a 9-year cohort study in Taiwan. Hypertens Res. 2019;42(8):1209–14.

Article  PubMed  PubMed Central  Google Scholar 

Liu X, et al. Blood neutrophil to lymphocyte ratio as a predictor of hypertension. Am J Hypertens. 2015;28(11):1339–46.

Article  PubMed  CAS  Google Scholar 

Nicholls SJ, Hazen SL. Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2005;25(6):1102–11.

Article  PubMed  CAS  Google Scholar 

Marsche G, et al. 2-Chlorohexadecanal derived from hypochlorite-modified high-density lipoprotein-associated plasmalogen is a natural inhibitor of endothelial nitric oxide biosynthesis. Arterioscler Thromb Vasc Biol. 2004;24(12):2302–6.

Article  PubMed  CAS 

Comments (0)

No login
gif