Vernucci E, Tomino C, Molinari F, Limongi D, Aventaggiato M, Sansone L, et al. Mitophagy and oxidative stress in cancer and aging: focus on Sirtuins and nanomaterials. Oxid Med Cell Longev. 2019;2019:6387357.
Article PubMed PubMed Central Google Scholar
Qiu YH, Zhang TS, Wang XW, Wang MY, Zhao WX, Zhou HM, et al. Mitochondria autophagy: a potential target for cancer therapy. J Drug Target. 2021;29(6):576–91.
Article CAS PubMed Google Scholar
Panigrahi DP, Praharaj PP, Bhol CS, Mahapatra KK, Patra S, Behera BP, et al. The emerging, multifaceted role of mitophagy in cancer and cancer therapeutics. Semin Cancer Biol. 2020;66:45–58.
Article CAS PubMed Google Scholar
Zheng Y, Huang C, Lu L, Yu K, Zhao J, Chen M, et al. STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib. J Hematol OncolJ Hematol Oncol. 2021;14(1):16.
Sun Y, Shen W, Hu S, Lyu Q, Wang Q, Wei T, et al. METTL3 promotes chemoresistance in small cell lung cancer by inducing mitophagy. J Exp Clin Cancer Res CR. 2023;42(1):65.
Article CAS PubMed Google Scholar
Li Y, Chen H, Xie X, Yang B, Wang X, Zhang J, et al. PINK1-mediated mitophagy promotes oxidative phosphorylation and redox homeostasis to induce drug-tolerant persister cancer cells. Cancer Res. 2023;83(3):398–413.
Article CAS PubMed Google Scholar
Meng Y, Qiu L, Zeng X, Hu X, Zhang Y, Wan X, et al. Targeting CRL4 suppresses chemoresistant ovarian cancer growth by inducing mitophagy. Signal Transduct Target Ther. 2022;7(1):388.
Article CAS PubMed PubMed Central Google Scholar
Chen YP, Shih PC, Feng CW, Wu CC, Tsui KH, Lin YH, et al. Pardaxin activates excessive mitophagy and mitochondria-mediated apoptosis in human ovarian cancer by inducing reactive oxygen species. Antioxid Basel Switz. 2021;10(12):1883.
Katreddy RR, Bollu LR, Su F, Xian N, Srivastava S, Thomas R, et al. Targeted reduction of the EGFR protein, but not inhibition of its kinase activity, induces mitophagy and death of cancer cells through activation of mTORC2 and Akt. Oncogenesis. 2018;7(1):5.
Article PubMed PubMed Central Google Scholar
Yu S, Yan X, Tian R, Xu L, Zhao Y, Sun L, et al. An experimentally induced mutation in the UBA Domain of p62 Changes the Sensitivity of Cisplatin by Up-Regulating HK2 Localisation on the Mitochondria and Increasing Mitophagy in A2780 Ovarian Cancer Cells. Int J Mol Sci. 2021;22(8):3983.
Article CAS PubMed PubMed Central Google Scholar
Zhang B, Chen F, Xu Q, Han L, Xu J, Gao L, et al. Revisiting ovarian cancer microenvironment: a friend or a foe? Protein Cell. 2018;9(8):674–92.
Odunsi K. Immunotherapy in ovarian cancer. Ann Oncol Off J Eur Soc Med Oncol. 2017;28(suppl 8):viii1-7.
Immunobiology of high-grade serous ovarian cancer: lessons for clinical translation—PubMed. https://pubmed.ncbi.nlm.nih.gov/36109621/. Accessed 26 Jun 2023.
Disis ML, Taylor MH, Kelly K, Beck JT, Gordon M, Moore KM, et al. Efficacy and safety of avelumab for patients with recurrent or refractory ovarian cancer: phase 1b results from the JAVELIN solid tumor trial. JAMA Oncol. 2019;5(3):393–401.
Article PubMed PubMed Central Google Scholar
Hamanishi J, Mandai M, Ikeda T, Minami M, Kawaguchi A, Murayama T, et al. Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(34):4015–22.
Matulonis UA, Shapira-Frommer R, Santin AD, Lisyanskaya AS, Pignata S, Vergote I, et al. Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: results from the phase II KEYNOTE-100 study. Ann Oncol Off J Eur Soc Med Oncol. 2019;30(7):1080–7.
Ott PA, Bang YJ, Piha-Paul SA, Razak ARA, Bennouna J, Soria JC, et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J Clin Oncol Off J Am Soc Clin Oncol. 2019;37(4):318–27.
Clinical implications of tumor-infiltrating immune cells in breast cancer—PubMed. https://pubmed.ncbi.nlm.nih.gov/31762828/. Accessed 26 Jun 2023.
The role of tumor-infiltrating lymphocytes in development, progression, and prognosis of non-small cell lung cancer—PubMed. https://pubmed.ncbi.nlm.nih.gov/26845192/. Accessed 26 Jun 2023.
T cell exclusion, immune privilege, and the tumor microenvironment—PubMed. https://pubmed.ncbi.nlm.nih.gov/25838376/. Accessed 26 Jun 2023.
The immune score as a new possible approach for the classification of cancer—PubMed. https://pubmed.ncbi.nlm.nih.gov/22214470/. Accessed 26 Jun 2023.
Neoantigens in cancer immunotherapy—PubMed. https://pubmed.ncbi.nlm.nih.gov/25838375/. Accessed 26 Jun 2023.
Autophagic adaptation to oxidative stress alters peritoneal residential macrophage survival and ovarian cancer metastasis—PubMed. https://pubmed.ncbi.nlm.nih.gov/32780724/. Accessed 26 Jun 2023.
TIMM8A is associated with dysfunction of immune cell in BRCA and UCEC for predicting anti-PD-L1 therapy efficacy—PubMed. https://pubmed.ncbi.nlm.nih.gov/36207751/. Accessed 26 Jun 2023.
Gene expression analysis in ovarian cancer - faults and hints from DNA microarray study—PubMed. https://pubmed.ncbi.nlm.nih.gov/24478986/. Accessed 26 Jun 2023.
Unsupervised analysis reveals two molecular subgroups of serous ovarian cancer with distinct gene expression profiles and survival—PubMed. https://pubmed.ncbi.nlm.nih.gov/27028324/. Accessed 26 Jun 2023.
The gene expression omnibus database—PubMed. https://pubmed.ncbi.nlm.nih.gov/27008011/. Accessed 26 Jun 2023.
limma powers differential expression analyses for RNA-sequencing and microarray studies—PubMed. https://pubmed.ncbi.nlm.nih.gov/25605792/. Accessed 26 Jun 2023.
Surrogate variable analysis—ProQuest. https://www.proquest.com/openview/e96ad2595466b34d2a96376a846cb80e/1?pq-origsite=gscholar&cbl=18750. Accessed 26 Jun 2023.
Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605–12.
Article CAS PubMed Google Scholar
Cytoscape: a software environment for integrated models of biomolecular interaction networks—PubMed. https://pubmed.ncbi.nlm.nih.gov/14597658/. Accessed 26 Jun 2023.
GSCA: an integrated platform for gene set cancer analysis at genomic, pharmacogenomic and immunogenomic levels—PubMed. https://pubmed.ncbi.nlm.nih.gov/36549921/. Accessed 26 Jun 2023.
ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking—PubMed. https://pubmed.ncbi.nlm.nih.gov/20427518/. Accessed 26 Jun 2023.
GSVA: gene set variation analysis for microarray and RNA-seq data—PubMed. https://pubmed.ncbi.nlm.nih.gov/23323831/. Accessed 26 Jun 2023.
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innov Camb Mass. 2021;2(3):100141.
Yang Z, Ming X, Huang S, Yang M, Zhou X, Fang J. Comprehensive analysis of m6A regulators characterized by the immune cell infiltration in head and neck squamous cell carcinoma to aid immunotherapy and chemotherapy. Front Oncol. 2021;11:764798.
Article CAS PubMed PubMed Central Google Scholar
pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels—PubMed. https://pubmed.ncbi.nlm.nih.gov/25229481/. Accessed 26 Jun 2023.
Xie K, Liu K, Alvi HAK, Chen Y, Wang S, Yuan X. KNNCNV: A K-Nearest neighbor based method for detection of copy number variations using NGS data. Front Cell Dev Biol. 2021;9:796249.
Yuan X, Yu G, Hou X, Shih Ie M, Clarke R, Zhang J, et al. Genome-wide identification of significant aberrations in cancer genome. BMC Genomics. 2012;13:342
Article CAS PubMed PubMed Central Google Scholar
Scheller J, Berg A, Moll JM, Floss DM, Jungesblut C. Current status and relevance of single nucleotide polymorphisms in IL-6-/IL-12-type cytokine receptors. Cytokine. 2021;148:155550.
Bagchi S, Yuan R, Engleman EG. Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance. Annu Rev Pathol. 2021;16:223–49.
Yi M, Jiao D, Qin S, Chu Q, Wu K, Li A. Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment. Mol Cancer. 2019;18(1):60.
Article PubMed PubMed Central Google Scholar
Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol 2013;14(12):1212–8.
Article CAS PubMed Google Scholar
Robert C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun 2020;11(1):3801.
Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 2016;16(5):275–87.
Article CAS PubMed PubMed Central Google Scholar
Lecocq Q, Keyaerts M, Devoogdt N, Breckpot K. The next-generation immune checkpoint LAG-3 and its therapeutic potential in oncology: third time's a charm. Int J Mol Sci. 2020;22(1). https://doi.org/10.3390/ijms22010075.
Lui Y, Davis SJ. LAG-3: a very singular immune checkpoint. Nat Immunol. 2018;19(12):1278–9.
Article CAS PubMed PubMed Central Google Scholar
Nguyen LT, Ohashi PS. Clinical blockade of PD1 and LAG3–potential mechanisms of action. Nat Rev Immunol. 2015;15(1):45–56.
Article CAS PubMed Google Scholar
Liu L, Bai X, Wang J, Tang XR, Wu DH, Du SS, et al. Combination of TMB and CNA Stratifies Prognostic and Predictive Responses to Immunotherapy Across Metastatic Cancer. Clin Cancer Res. 2019;25(24):7413–23.
Article CAS PubMed Google Scholar
Pinato DJ, Howlett S, Ottaviani D, Urus H, Patel A, Mineo T, et al. Association of prior antibiotic treatment with survival and response to immune checkpoint inhibitor therapy in patients with cancer. JAMA Oncol. 2019;5(12):1774–8.
Article PubMed PubMed Central Google Scholar
Xu Y, Shen J, Ran Z. Emerging views of mitophagy in immunity and autoimmune diseases. Autophagy. 2020;16(1):3–17.
Article CAS PubMed Google Scholar
Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015;162(6):1229–41.
Article CAS PubMed PubMed Central Google Scholar
Mitophagy in cancer: a tale of adaptation—PubMed. https://pubmed.ncbi.nlm.nih.gov/31121959/. Accessed 26 Jun 2023.
Recurrent ubiquitin B silencing in gynecological cancers establishes dependence on ubiquitin C—PubMed. https://pubmed.ncbi.nlm.nih.gov/29130934/. Accessed 26 Jun 2023.
Comments (0)