Majidinia M, et al. Overcoming multidrug resistance in cancer: Recent progress in nanotechnology and new horizons. IUBMB Life. 2020;72(5):855–71. https://doi.org/10.1002/iub.2215.
Article CAS PubMed Google Scholar
de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Heal. 2020;8(2):e180–90. https://doi.org/10.1016/S2214-109X(19)30488-7.
Wiggs A, Molina S, Sumner SJ, Rushing BR. A review of metabolic targets of anticancer nutrients and nutraceuticals in pre-clinical models of triple-negative breast cancer. Nutrients. 2022. https://doi.org/10.3390/nu14101990.
Article PubMed PubMed Central Google Scholar
Bou Zerdan M, et al. Triple negative breast cancer: updates on classification and treatment in 2021. Cancers (Basel). 2022;14(5):1253. https://doi.org/10.3390/cancers14051253.
Article CAS PubMed Google Scholar
Lemay-Nedjelski L, Mason-Ennis JK, Taibi A, Comelli EM, Thompson LU. Omega-3 polyunsaturated fatty acids time-dependently reduce cell viability and oncogenic microRNA-21 expression in estrogen receptor-positive breast cancer cells (MCF-7). Int J Mol Sci. 2018;19(1):1–13. https://doi.org/10.3390/ijms19010244.
Kozhukharova I, Zemelko V, Kovaleva Z, Alekseenko L, Lyublinskaya O, Nikolsky N. Therapeutic doses of doxorubicin induce premature senescence of human mesenchymal stem cells derived from menstrual blood, bone marrow, and adipose tissue. Int J Hematol. 2018;107(3):286–96. https://doi.org/10.1007/s12185-017-2346-6.
Article CAS PubMed Google Scholar
Kanwal U, Bukhari NI, Ovais M, Abass N. Advances in nano-delivery systems for doxorubicin: an updated insight. J Drug Target. 2018. https://doi.org/10.1080/1061186X.2017.1380655.
Maejima Y, Adachi S, Ito H, Hirao K, Isobe M. Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage. Aging Cell. 2008;7(2):125–36. https://doi.org/10.1111/j.1474-9726.2007.00358.x.
Article CAS PubMed Google Scholar
Rafiyath SM, Rasul M, Lee B, Wei G, Lamba G, Liu D. Comparison of safety and toxicity of liposomal doxorubicin vs. conventional anthracyclines: a meta-analysis. Exp Hematol Oncol. 2012;1(1):10. https://doi.org/10.1186/2162-3619-1-10.
Article CAS PubMed PubMed Central Google Scholar
Ordovas JM, Ferguson LR, Tai ES, Mathers JC. Personalised nutrition and health. BMJ. 2018. https://doi.org/10.1136/bmj.k2173.
Article PubMed PubMed Central Google Scholar
Tsugane S. Why has Japan become the world’s most long-lived country: insights from a food and nutrition perspective. Eur J Clin Nutr. 2021;75(6):921–8. https://doi.org/10.1038/s41430-020-0677-5.
Nindrea RD, Aryandono T, Lazuardi L, Dwiprahasto I. Association of dietary intake ratio of n-3/n-6 polyunsaturated fatty acids with breast cancer risk in western and asian countries: a meta-analysis. Asian Pacific J Cancer Prev. 2019;20(5):1321–7. https://doi.org/10.31557/APJCP.2019.20.5.1321.
Zhao J. Nutraceuticals, nutritional therapy, phytonutrients, and phytotherapy for improvement of human health: a perspective on plant biotechnology application. Recent Pat Biotechnol. 2008;1(1):75–97. https://doi.org/10.2174/187220807779813893.
Gorjao R, et al. New insights on the regulation of cancer cachexia by N-3 polyunsaturated fatty acids. Pharmacol Ther. 2019;196:117–34. https://doi.org/10.1016/j.pharmthera.2018.12.001.
Article CAS PubMed Google Scholar
Siddiqui RA, Harvey KA, Xu Z, Bammerlin EM, Walker C, Altenburg JD. Docosahexaenoic acid: a natural powerful adjuvant that improves efficacy for anticancer treatment with no adverse effects. BioFactors. 2011;37(6):399–412. https://doi.org/10.1002/biof.181.
Article CAS PubMed Google Scholar
Lin G, et al. Ω-3 free fatty acids and all-trans retinoic acid synergistically induce growth inhibition of three subtypes of breast cancer cell lines. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-03231-9.
Article PubMed PubMed Central Google Scholar
Fodil M, Blanckaert V, Ulmann L, Mimouni V, Chénais B. Contribution of n-3 long-chain polyunsaturated fatty acids to the prevention of breast cancer risk factors. Int J Environ Res Pub Health. 2022. https://doi.org/10.3390/ijerph19137936.
Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21093233.
Article PubMed PubMed Central Google Scholar
Bennouna D, Solano M, Orchard TS, DeVries AC, Lustberg M, Kopec RE. The effects of doxorubicin-based chemotherapy and omega-3 supplementation on mouse brain lipids. Metabolites. 2019;9(10):1–16. https://doi.org/10.3390/metabo9100208.
Pan P, et al. The immunomodulatory potential of natural compounds in tumor-bearing mice and humans. Crit Rev Food Sci Nutr. 2019;59(6):992–1007. https://doi.org/10.1080/10408398.2018.1537237.
Article CAS PubMed PubMed Central Google Scholar
Carvalho C, et al. Doxorubicin: The good, the bad and the ugly effect. Curr Med Chem. 2009;16(25):3267–3285. https://doi.org/10.2174/092986709788803312.
Article CAS PubMed Google Scholar
Vaughan VC, Hassing MR, Lewandowski PA. Marine polyunsaturated fatty acids and cancer therapy. Br J Cancer. 2013;108(3):486–92. https://doi.org/10.1038/bjc.2012.586.
Article CAS PubMed PubMed Central Google Scholar
Newell M, Brun M, Field CJ. Treatment with DHA modify the response of MDA-MB-231 breast cancer cells and tumors from nu/nu mice to Doxorubicin through apoptosis and cell cycle arrest. J Nutr. 2019;149(1):46–56. https://doi.org/10.1093/jn/nxy224.
Fuentes NR, et al. Long-chain n-3 fatty acids attenuate oncogenic kras-driven proliferation by altering plasma membrane nanoscale proteolipid composition. Cancer Res. 2018;78(14):3899–912. https://doi.org/10.1158/0008-5472.CAN-18-0324.
Article CAS PubMed PubMed Central Google Scholar
West L, et al. Docosahexaenoic acid ( DHA ), an omega-3 fatty acid, inhibits tumor growth and metastatic potential of ovarian cancer. American J Cancer Res. 2020;10(12):4450–63.
Taxel P, Faircloth E, Idrees S, Van Poznak C. Cancer treatment-induced bone loss in women with breast cancer and men with prostate cancer. J Endocr Soc. 2018;2(7):574–88. https://doi.org/10.1210/js.2018-00052.
Article CAS PubMed PubMed Central Google Scholar
Zheng H, et al. Inhibition of endometrial cancer by n-3 polyunsaturated fatty acids in preclinical models. Cancer Prev Res. 2014;7(8):824–34. https://doi.org/10.1158/1940-6207.CAPR-13-0378-T.
Kang JX, Wan J, He C. Concise review: regulation of stem cell proliferation and differentiation by essential fatty acids and their metabolites. Stem Cells. 2014;32(5):92–8. https://doi.org/10.1002/stem.1620.
Limbkar K, Dhenge A, Jadhav DD, Thulasiram HV, Kale V, Limaye L. Oral feeding with polyunsaturated fatty acids fosters hematopoiesis and thrombopoiesis in healthy and bone marrow-transplanted mice. J Nutr Biochem. 2017;47:94–105. https://doi.org/10.1016/j.jnutbio.2017.05.002.
Article CAS PubMed Google Scholar
Limbkar K, Kale V, Limaye L. Oral feeding with arachidonic acid (AA) and docosahexanoic acid (DHA) help in better recovery of haematopoiesis in sub-lethally irradiated mice. Biomed Res J. 2016;3(2):182. https://doi.org/10.4103/2349-3666.240611.
Yun SP, Ryu JM, Jang MW, Han HJ. Interaction of profilin-1 and F-actin via a β-arrestin-1/JNK signaling pathway involved in prostaglandin E2-induced human mesenchymal stem cells migration and proliferation. J Cell Physiol. 2011;226(2):559–571. https://doi.org/10.1002/jcp.22366.
Comments (0)