Telomerase inhibition in breast cancer and breast cancer stem cells: a brief review

Butti R, Gunasekaran VP, Kumar TVS, Banerjee P, Kundu GC. Breast cancer stem cells: biology and therapeutic implications. Int J Biochem Cell Biol. 2019. https://doi.org/10.1016/j.biocel.2018.12.001.

Article  PubMed  Google Scholar 

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023. https://doi.org/10.3322/caac.21763.

Article  PubMed  Google Scholar 

Luque-Bolivar A, Pérez-Mora E, Villegas VE, Rondón-Lagos M. Resistance and overcoming resistance in breast cancer. Breast Cancer Targets Ther. 2020. https://doi.org/10.2147/BCTT.S270799.

Article  Google Scholar 

Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res. 2017. https://doi.org/10.1186/s40659-017-0140-9.

Article  PubMed  PubMed Central  Google Scholar 

Narod SA, Iqbal J, Giannakeas V, Sopik V, Sun P. Breast cancer mortality after a diagnosis of ductal carcinoma in situ. JAMA Oncol. 2015. https://doi.org/10.1001/jamaoncol.2015.2510.

Article  PubMed  Google Scholar 

Wen HY, Brogi E. Lobular carcinoma ın situ. Surgical Pathology Clinics. 2018. https://doi.org/10.1016/j.path.2017.09.009.

Article  PubMed  Google Scholar 

Vuong D, Simpson PT, Green B, Cummings MC, Lakhani SR. Molecular classification of breast cancer. Virchows Arch. 2014. https://doi.org/10.1007/s00428-014-1593-7.

Article  PubMed  Google Scholar 

Johnson KS, Conant EF, Soo MS. Molecular subtypes of breast cancer: a review for breast radiologists. J Breast Imaging. 2021. https://doi.org/10.1093/jbi/wbaa110.

Article  PubMed  Google Scholar 

Prat A, et al. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast. 2015. https://doi.org/10.1016/j.breast.2015.07.008.

Article  PubMed  Google Scholar 

Tang P, Tse GM. Immunohistochemical surrogates for molecular classification of breast carcinoma: a 2015 update. Arch Pathol Lab Med. 2016. https://doi.org/10.5858/arpa.2015-0133-RA.

Article  PubMed  Google Scholar 

Biehl JK, Russell B. Introduction to stem cell therapy. J Cardiovasc Nurs. 2009. https://doi.org/10.1097/JCN.0b013e318197a6a5.

Article  PubMed  PubMed Central  Google Scholar 

Ajmeera D, Ajumeera R. Drug repurposing: a novel strategy to target cancer stem cells and therapeutic resistance. Genes and Diseases. 2024. https://doi.org/10.1016/j.gendis.2022.12.013.

Article  PubMed  Google Scholar 

Barzaman K, et al. Breast cancer: biology, biomarkers, and treatments. Int Immunopharmacol. 2020. https://doi.org/10.1016/j.intimp.2020.106535.

Article  PubMed  Google Scholar 

Bai X, Ni J, Beretov J, Graham P, Li Y. Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat Rev. 2018. https://doi.org/10.1016/j.ctrv.2018.07.004.

Article  PubMed  Google Scholar 

Abraham BK, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H. Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res. 2005. https://doi.org/10.1158/1078-0432.1154.11.3.

Article  PubMed  Google Scholar 

Balic M, et al. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res. 2006. https://doi.org/10.1158/1078-0432.CCR-06-0169.

Article  PubMed  Google Scholar 

Charafe-Jauffret E, et al. Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res. 2010. https://doi.org/10.1158/1078-0432.CCR-09-1630.

Article  PubMed  Google Scholar 

Marcato P, et al. Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells. 2011. https://doi.org/10.1002/stem.563.

Article  PubMed  Google Scholar 

Gallardo-Pérez JC, de Guevara AAL, Marín-Hernández A, Moreno-Sánchez R, Rodríguez-Enríquez S. HPI/AMF inhibition halts the development of the aggressive phenotype of breast cancer stem cells. Biochim Biophys Acta—Mol Cell Res. 2017. https://doi.org/10.1016/j.bbamcr.2017.06.015.

Article  PubMed  Google Scholar 

Yamashita N, et al. Vimentin as a poor prognostic factor for triple-negative breast cancer. J Cancer Res Clin Oncol. 2013. https://doi.org/10.1007/s00432-013-1376-6.

Article  PubMed  Google Scholar 

Berx G, et al. E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. EMBO J. 1995;14(24):6107–15. https://doi.org/10.1002/j.1460-2075.1995.tb00301.x.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Baranwal S, Alahari SK. Molecular mechanisms controlling E-cadherin expression in breast cancer. Biochem Biophys Res Commun. 2009. https://doi.org/10.1016/j.bbrc.2009.04.051.

Article  PubMed  PubMed Central  Google Scholar 

Yoshida R, Kimura N, Harada Y, Ohuchi N. The loss of E-cadherin, alpha- and beta-catenin expression is associated with metastasis and poor prognosis in invasive breast cancer. Int J Oncol. 2001. https://doi.org/10.3892/ijo.18.3.513.

Article  PubMed  Google Scholar 

Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA. Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol. 2000. https://doi.org/10.1083/jcb.148.4.779.

Article  PubMed  PubMed Central  Google Scholar 

Yang N, et al. FOXM1 recruits nuclear Aurora kinase A to participate in a positive feedback loop essential for the self-renewal of breast cancer stem cells. Oncogene. 2017. https://doi.org/10.1038/onc.2016.490.

Article  PubMed  PubMed Central  Google Scholar 

Zhang L, Chen W, Liu S, Chen C. Targeting breast cancer stem cells. Int J Biol Sci. 2023. https://doi.org/10.7150/ijbs.76187.

Article  PubMed  PubMed Central  Google Scholar 

Doğan F, et al. Investigation of the effect of telomerase inhibitor BIBR1532 on breast cancer and breast cancer stem cells. J Cell Biochem. 2019. https://doi.org/10.1002/jcb.27089.

Article  PubMed  Google Scholar 

Mustafa YF. Phytomedicine plus nutraceutical-based telomerase inhibitors : renewed hope for cancer therapy. Phytomedicine Plus. 2024;4(2):100537. https://doi.org/10.1016/j.phyplu.2024.100537.

Article  Google Scholar 

Herbert BS, Wright WE, Shay JW. Telomerase and breast cancer. Breast Cancer Res. 2001. https://doi.org/10.1186/bcr288.

Article  PubMed  PubMed Central  Google Scholar 

González-Moles MÁ, Moya-González E, García-Ferrera A, Nieto-Casado P, Ramos-García P. Prognostic and clinicopathological significance of telomerase reverse transcriptase upregulation in oral cancer: a systematic review and meta-analysis. Cancers. 2022. https://doi.org/10.3390/cancers14153673.

Article  PubMed  PubMed Central  Google Scholar 

Judasz E, Lisiak N, Kopczyński P, Taube M, Rubiś B. The role of telomerase in breast cancer’s response to therapy. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms232112844.

Article  PubMed  PubMed Central  Google Scholar 

Tian X, Chen B, Liu X. Telomere and telomerase as targets for cancer therapy. Appl Biochem Biotechnol. 2010. https://doi.org/10.1007/s12010-009-8633-9.

Article  PubMed 

Comments (0)

No login
gif