Analysis of possible effects of recombinant antimicrobial peptide TP4 on colon cancer line HT-29

Wu S, Powers S, Zhu W, Hannun YA. Substantial contribution of extrinsic risk factors to cancer development. Nature. 2016;529:43–7. https://doi.org/10.1038/nature16166.

Article  CAS  PubMed  Google Scholar 

Khan S, Simsek R, Benitez Fuentes JD, Vohra I, Vohra S. Implication of Toll-Like receptors in growth and management of health and diseases: special focus as a promising druggable target to prostate cancer. Biochim Biophys Acta Rev Cancer. 2025;1880(1): 189229. https://doi.org/10.1016/j.bbcan.2024.189229.

Article  CAS  PubMed  Google Scholar 

Khan S, Mosvi SN, Vohra S, Poddar NK. Implication of calcium supplementations in health and diseases with special focus on colorectal cancer. Crit Rev Clin Lab Sci. 2024;61(6):496–509. https://doi.org/10.1080/10408363.2024.2322565.

Article  CAS  PubMed  Google Scholar 

Luo XM, Khan S, Tabatabaie F, et al. Calcium supplementation in colorectal cancer prevention: a systematic meta-analysis of adverse events. Biocell. 2022. https://doi.org/10.32604/biocell.2022.016586.

Article  Google Scholar 

Khan S, Imran A, Khan AA, Kalam MA, Alshamsan A. Systems biology approaches for the prediction of possible role of Chlamydia pneumoniae proteins in the etiology of lung cancer. PLoS ONE. 2016;11(2): e0148530. https://doi.org/10.1371/journal.pone.0148530.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Imran A, Shami A, Chaudhary AA, Khan S. Decipher the Helicobacter pylori protein targeting in the nucleus of host cell and their implications in gallbladder cancer: an in silico approach. Cancer. 2021;12(23):7214–22. https://doi.org/10.7150/jca.63517.

Article  CAS  Google Scholar 

Khan S, Zakariah M, Rolfo C, Lembrechts R, Palaniappan S. Prediction of Mycoplasma hominis proteins targeting in mitochondria and cytoplasm of host cells and their implication in prostate cancer etiology. Oncotarget. 2016;8(19):30830–43. https://doi.org/10.18632/oncotarget.8306.

Article  PubMed Central  Google Scholar 

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer burden in 2022: major challenges and opportunities to address inequities in cancer outcomes. CA Cancer J Clin. 2024;74(2):132–49. https://doi.org/10.3322/caac.21763.

Article  Google Scholar 

Stintzing S. Management of colorectal cancer. F1000Prime Rep. 2014;6: 108. https://doi.org/10.12703/P6-108.

Article  PubMed  PubMed Central  Google Scholar 

Ponnusamy L, Mahalingaiah PKS, Singh KP. Chronic oxidative stress increases resistance to doxorubicin-induced cytotoxicity in renal carcinoma cells potentially through epigenetic mechanism. Mol Pharmacol. 2016;89(1):27–41. https://doi.org/10.1124/mol.115.100206.

Article  CAS  PubMed  Google Scholar 

Mármol I, Sánchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi MJ. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int J Mol Sci. 2017;18(1): 197. https://doi.org/10.3390/ijms18010197.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sedlak JC, Yilmaz ÖH, Roper JR. Metabolism and colorectal cancer. Annu Rev Pathol Mech Dis. 2023;18:467–92. https://doi.org/10.1146/annurev-pathmechdis-031521-04111.

Article  CAS  Google Scholar 

Lau JL, Dunn MK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem. 2018;26(10):2700–7. https://doi.org/10.1016/j.bmc.2017.06.052.

Article  CAS  PubMed  Google Scholar 

Chauhan S, Dhawan DK, Saini A, Preet S. Antimicrobial peptides against colorectal cancer—a focused review. Pharmacol Res. 2021;167:105529. https://doi.org/10.1016/j.phrs.2021.105529.

Article  CAS  PubMed  Google Scholar 

Saleh RO, Essia INA, Jasim SA. The anticancer effect of a conjugated antimicrobial peptide against colorectal cancer (CRC) cells. J Gastrointest Cancer. 2023;54(1):165–70. https://doi.org/10.1007/s12029-021-00799-4.

Article  CAS  PubMed  Google Scholar 

Jia F, Yu Q, Wang R, Zhao L, Yuan F, Guo H, Shen Y, He F. Optimized antimicrobial peptide Jelleine-I derivative Br-J-I inhibits Fusobacterium nucleatum to suppress colorectal cancer progression. Int J Mol Sci. 2023;24(2): 1469. https://doi.org/10.3390/ijms24021469.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gaspar D, Veiga AS, Castanho MARB. From antimicrobial to anticancer peptides. A review. Front Microbiol. 2013;4: 294. https://doi.org/10.3389/fmicb.2013.00294.

Article  PubMed  PubMed Central  Google Scholar 

Lien S, Lowman HB. Therapeutic peptides. Trends Biotechnol. 2003;21(12):556–62. https://doi.org/10.1016/j.tibtech.2003.10.005.

Article  CAS  PubMed  Google Scholar 

Zhong C, Zhang L, Yu L, Huang J, Huang S, Yao Y. A review for antimicrobial peptides with anticancer properties: re-purposing of potential anticancer agents. BIOI. 2020;1(4):156–67. https://doi.org/10.15212/bioi-2020-0013.

Article  Google Scholar 

Boohaker RJ, Lee MW, Vishnubhotla P, Perez JM, Khaled AR. The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem. 2012;19(22):3794–804. https://doi.org/10.2174/092986712801661004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marqus S, Pirogova E, Piva TJ. Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci. 2017. https://doi.org/10.1186/s12929-017-0328-x.

Article  PubMed  PubMed Central  Google Scholar 

Seyfi R, Kahaki FA, Ebrahimi T, Montazersaheb S, Eyvazi S, Babaeipour V, et al. Antimicrobial peptides (AMPs): roles, functions and mechanism of action. Int J Pept Res Ther. 2019. https://doi.org/10.1007/s10989-019-09946-9.

Article  Google Scholar 

Shoombuatong W, Schaduangrat N, Nantasenamat C. Unraveling the bioactivity of anticancer peptides as deduced from machine learning. EXCLI J. 2018;17:734–52. https://doi.org/10.17179/excli2018-1447.

Article  PubMed  PubMed Central  Google Scholar 

Wang L, Wang N, Zhang W, Cheng X, Yan Z, Shao G, Wang X, Wang R, Fu C. Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther. 2022;7:48. https://doi.org/10.1038/s41392-022-00915-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng KC, Lee SH, Hour AL, Pan CY, Lee LH, Chen JY. Five different piscidins from Nile tilapia, Oreochromis niloticus: analysis of their expressions and biological functions. PLoS ONE. 2012;7(11): e50263. https://doi.org/10.1371/journal.pone.0050263.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mahrous KF, Aboelenin MM, Abd El-Kader HAM, Mabrouk DM, Gaafar AY, Younes AM, Mahmoud MA, Khalil WKB, Hassanane MS. Piscidin 4: genetic expression and comparative immunolocalization in Nile tilapia (Oreochromis niloticus) following challenge using different local bacterial strains. Dev Comp Immunol. 2020;112: 103777. https://doi.org/10.1016/j.dci.2020.103777.

Article  CAS  PubMed  Google Scholar 

Dyshlovoy SA, Honecker F. Marine compounds and cancer: updates 2020. Mar Drugs. 2020;18(12): 643. https://doi.org/10.3390/md18120643.

Article  PubMed  PubMed Central  Google Scholar 

Neshani A, Eidgahi MRA, Zare1 H, Ghazvini K. Extended-spectrum antimicrobial activity of the low cost produced tilapia piscidin 4 (TP4) marine antimicrobial peptide. J Res Med Dental Sci. 2018;6:327–334

Huang HN, Su BC, Tsai TY, Rajanbabu V, Pan CY, Chen JY. Dietary supplementation of recombinant tilapia piscidin 4-expressing yeast enhances growth and immune response in Lates calcarifer. Aquac Rep. 2020;16: 100254. https://doi.org/10.1016/j.aqrep.2019.100254.

Article  Google Scholar 

Tai HM, You MF, Lin CH, Tsai TY, Pan CY, Chen JY. Scale-up production of and dietary supplementation with the recombinant antimicrobial peptide tilapia piscidin 4 to improve growth performance in Gallus gallus domesticus. PLoS ONE. 2021;16(6): e0253661. https://doi.org/10.1371/journal.pone.0253661.

Comments (0)

No login
gif