Wu S, Powers S, Zhu W, Hannun YA. Substantial contribution of extrinsic risk factors to cancer development. Nature. 2016;529:43–7. https://doi.org/10.1038/nature16166.
Article CAS PubMed Google Scholar
Khan S, Simsek R, Benitez Fuentes JD, Vohra I, Vohra S. Implication of Toll-Like receptors in growth and management of health and diseases: special focus as a promising druggable target to prostate cancer. Biochim Biophys Acta Rev Cancer. 2025;1880(1): 189229. https://doi.org/10.1016/j.bbcan.2024.189229.
Article CAS PubMed Google Scholar
Khan S, Mosvi SN, Vohra S, Poddar NK. Implication of calcium supplementations in health and diseases with special focus on colorectal cancer. Crit Rev Clin Lab Sci. 2024;61(6):496–509. https://doi.org/10.1080/10408363.2024.2322565.
Article CAS PubMed Google Scholar
Luo XM, Khan S, Tabatabaie F, et al. Calcium supplementation in colorectal cancer prevention: a systematic meta-analysis of adverse events. Biocell. 2022. https://doi.org/10.32604/biocell.2022.016586.
Khan S, Imran A, Khan AA, Kalam MA, Alshamsan A. Systems biology approaches for the prediction of possible role of Chlamydia pneumoniae proteins in the etiology of lung cancer. PLoS ONE. 2016;11(2): e0148530. https://doi.org/10.1371/journal.pone.0148530.
Article CAS PubMed PubMed Central Google Scholar
Wang Y, Imran A, Shami A, Chaudhary AA, Khan S. Decipher the Helicobacter pylori protein targeting in the nucleus of host cell and their implications in gallbladder cancer: an in silico approach. Cancer. 2021;12(23):7214–22. https://doi.org/10.7150/jca.63517.
Khan S, Zakariah M, Rolfo C, Lembrechts R, Palaniappan S. Prediction of Mycoplasma hominis proteins targeting in mitochondria and cytoplasm of host cells and their implication in prostate cancer etiology. Oncotarget. 2016;8(19):30830–43. https://doi.org/10.18632/oncotarget.8306.
Article PubMed Central Google Scholar
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer burden in 2022: major challenges and opportunities to address inequities in cancer outcomes. CA Cancer J Clin. 2024;74(2):132–49. https://doi.org/10.3322/caac.21763.
Stintzing S. Management of colorectal cancer. F1000Prime Rep. 2014;6: 108. https://doi.org/10.12703/P6-108.
Article PubMed PubMed Central Google Scholar
Ponnusamy L, Mahalingaiah PKS, Singh KP. Chronic oxidative stress increases resistance to doxorubicin-induced cytotoxicity in renal carcinoma cells potentially through epigenetic mechanism. Mol Pharmacol. 2016;89(1):27–41. https://doi.org/10.1124/mol.115.100206.
Article CAS PubMed Google Scholar
Mármol I, Sánchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi MJ. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int J Mol Sci. 2017;18(1): 197. https://doi.org/10.3390/ijms18010197.
Article CAS PubMed PubMed Central Google Scholar
Sedlak JC, Yilmaz ÖH, Roper JR. Metabolism and colorectal cancer. Annu Rev Pathol Mech Dis. 2023;18:467–92. https://doi.org/10.1146/annurev-pathmechdis-031521-04111.
Lau JL, Dunn MK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem. 2018;26(10):2700–7. https://doi.org/10.1016/j.bmc.2017.06.052.
Article CAS PubMed Google Scholar
Chauhan S, Dhawan DK, Saini A, Preet S. Antimicrobial peptides against colorectal cancer—a focused review. Pharmacol Res. 2021;167:105529. https://doi.org/10.1016/j.phrs.2021.105529.
Article CAS PubMed Google Scholar
Saleh RO, Essia INA, Jasim SA. The anticancer effect of a conjugated antimicrobial peptide against colorectal cancer (CRC) cells. J Gastrointest Cancer. 2023;54(1):165–70. https://doi.org/10.1007/s12029-021-00799-4.
Article CAS PubMed Google Scholar
Jia F, Yu Q, Wang R, Zhao L, Yuan F, Guo H, Shen Y, He F. Optimized antimicrobial peptide Jelleine-I derivative Br-J-I inhibits Fusobacterium nucleatum to suppress colorectal cancer progression. Int J Mol Sci. 2023;24(2): 1469. https://doi.org/10.3390/ijms24021469.
Article CAS PubMed PubMed Central Google Scholar
Gaspar D, Veiga AS, Castanho MARB. From antimicrobial to anticancer peptides. A review. Front Microbiol. 2013;4: 294. https://doi.org/10.3389/fmicb.2013.00294.
Article PubMed PubMed Central Google Scholar
Lien S, Lowman HB. Therapeutic peptides. Trends Biotechnol. 2003;21(12):556–62. https://doi.org/10.1016/j.tibtech.2003.10.005.
Article CAS PubMed Google Scholar
Zhong C, Zhang L, Yu L, Huang J, Huang S, Yao Y. A review for antimicrobial peptides with anticancer properties: re-purposing of potential anticancer agents. BIOI. 2020;1(4):156–67. https://doi.org/10.15212/bioi-2020-0013.
Boohaker RJ, Lee MW, Vishnubhotla P, Perez JM, Khaled AR. The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem. 2012;19(22):3794–804. https://doi.org/10.2174/092986712801661004.
Article CAS PubMed PubMed Central Google Scholar
Marqus S, Pirogova E, Piva TJ. Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci. 2017. https://doi.org/10.1186/s12929-017-0328-x.
Article PubMed PubMed Central Google Scholar
Seyfi R, Kahaki FA, Ebrahimi T, Montazersaheb S, Eyvazi S, Babaeipour V, et al. Antimicrobial peptides (AMPs): roles, functions and mechanism of action. Int J Pept Res Ther. 2019. https://doi.org/10.1007/s10989-019-09946-9.
Shoombuatong W, Schaduangrat N, Nantasenamat C. Unraveling the bioactivity of anticancer peptides as deduced from machine learning. EXCLI J. 2018;17:734–52. https://doi.org/10.17179/excli2018-1447.
Article PubMed PubMed Central Google Scholar
Wang L, Wang N, Zhang W, Cheng X, Yan Z, Shao G, Wang X, Wang R, Fu C. Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther. 2022;7:48. https://doi.org/10.1038/s41392-022-00915-1.
Article CAS PubMed PubMed Central Google Scholar
Peng KC, Lee SH, Hour AL, Pan CY, Lee LH, Chen JY. Five different piscidins from Nile tilapia, Oreochromis niloticus: analysis of their expressions and biological functions. PLoS ONE. 2012;7(11): e50263. https://doi.org/10.1371/journal.pone.0050263.
Article CAS PubMed PubMed Central Google Scholar
Mahrous KF, Aboelenin MM, Abd El-Kader HAM, Mabrouk DM, Gaafar AY, Younes AM, Mahmoud MA, Khalil WKB, Hassanane MS. Piscidin 4: genetic expression and comparative immunolocalization in Nile tilapia (Oreochromis niloticus) following challenge using different local bacterial strains. Dev Comp Immunol. 2020;112: 103777. https://doi.org/10.1016/j.dci.2020.103777.
Article CAS PubMed Google Scholar
Dyshlovoy SA, Honecker F. Marine compounds and cancer: updates 2020. Mar Drugs. 2020;18(12): 643. https://doi.org/10.3390/md18120643.
Article PubMed PubMed Central Google Scholar
Neshani A, Eidgahi MRA, Zare1 H, Ghazvini K. Extended-spectrum antimicrobial activity of the low cost produced tilapia piscidin 4 (TP4) marine antimicrobial peptide. J Res Med Dental Sci. 2018;6:327–334
Huang HN, Su BC, Tsai TY, Rajanbabu V, Pan CY, Chen JY. Dietary supplementation of recombinant tilapia piscidin 4-expressing yeast enhances growth and immune response in Lates calcarifer. Aquac Rep. 2020;16: 100254. https://doi.org/10.1016/j.aqrep.2019.100254.
Tai HM, You MF, Lin CH, Tsai TY, Pan CY, Chen JY. Scale-up production of and dietary supplementation with the recombinant antimicrobial peptide tilapia piscidin 4 to improve growth performance in Gallus gallus domesticus. PLoS ONE. 2021;16(6): e0253661. https://doi.org/10.1371/journal.pone.0253661.
Comments (0)