Rizk NI, et al. Revealing the role of serum exosomal novel long non-coding RNA NAMPT-AS as a promising diagnostic/prognostic biomarker in colorectal cancer patients. Life Sci. 2024;352:122850.
Siegel RL, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70:145–64.
miR760 regulates ATXN1 levels via interaction with its 5’ untranslated region
Hamdy NM, et al. Unraveling the ncRNA landscape that governs colorectal cancer: a roadmap to personalized therapeutics. Life Sci. 2024;354:122946.
Sawicki T, et al. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis. Cancers. 2021;13(9):2025.
CAS PubMed PubMed Central Google Scholar
Hamdy NM, et al. Advancements in current one-size-fits-all therapies compared to future treatment innovations for better improved chemotherapeutic outcomes: a step-toward personalized medicine. Curr Med Res Opin. 2024;40(11):1943–61.
Islam Khan MZ. Exploring long non-coding RNAs and metabolic proteins as potential biomarkers for colorectal cancer. 2021.
Zhan H, et al. MicroRNAs and long non-coding RNAs in C-Met-regulated cancers. Front Cell Dev Biol. 2020;8:145.
PubMed PubMed Central Google Scholar
Hahne JC, Valeri N. Non-coding RNAs and resistance to anticancer drugs in gastrointestinal tumors. Front Oncol. 2018;8:226.
PubMed PubMed Central Google Scholar
Statello L, et al. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96–118.
Sharma U, et al. Long non-coding RNA TINCR as potential biomarker and therapeutic target for cancer. Life Sci. 2020;257:118035.
CAS PubMed PubMed Central Google Scholar
Rezaei Z, et al. Plasma microRNA-195, −34c, and − 1246 as novel biomarkers for the diagnosis of trastuzumab-resistant HER2-positive breast cancer patients. Toxicol Appl Pharmacol. 2023;475:116652.
Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol. 2011;13:877–83.
CAS PubMed PubMed Central Google Scholar
Yimlamai D, et al. Hippo pathway activity influences liver cell fate. Cell. 2014;157:1324–38.
CAS PubMed PubMed Central Google Scholar
Emami SS, Zhang D, Yang X. Interaction of the Hippo pathway and phosphatases in tumorigenesis. Cancers. 2020;12:2438.
Fan R, Kim N-G, Gumbiner BM. Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc Natl Acad Sci. 2013;110:2569–74.
CAS PubMed PubMed Central Google Scholar
Chang W, et al. Roles of long noncoding RNAs and small extracellular vesicle-long noncoding RNAs in type 2 diabetes. Traffic. 2022;23:526–37.
CAS PubMed PubMed Central Google Scholar
Hosseini SF, et al. The importance of hsa-miR-28 in human malignancies. Biomed Pharmacother. 2023;161:114453.
Hammad R, et al. Monocytes subsets altered distribution and dysregulated plasma hsa-miR-21-5p and hsa-miR-155-5p in HCV-linked liver cirrhosis progression to hepatocellular carcinoma. J Cancer Res Clin Oncol. 2023;149(17):15349–64.
CAS PubMed PubMed Central Google Scholar
Pourmehran Y, et al. Exploring the influence of non-coding RNAs on NF-κB signaling pathway regulation in ulcerative colitis. Biomed Pharmacother. 2024;179:117390.
Sadri F, et al. The tumor suppressor roles and mechanisms of MiR-491 in human cancers. DNA Cell Biol. 2022;41(9):810–23.
Rezaei Z, Sadri F. MicroRNAs involved in inflammatory breast cancer: oncogene and tumor suppressors with possible targets. DNA Cell Biol. 2021;40(3):499–512.
DeCicco D, et al. MicroRNA network changes in the brain stem underlie the development of hypertension. Physiol Genomics. 2015;47:388–99.
CAS PubMed PubMed Central Google Scholar
Chamani E, et al. microRNAs: novel markers in diagnostics and therapeutics of celiac disease. DNA Cell Biol. 2019;38(7):708–17.
Palazzo AF, Lee ES. Non-coding RNA: what is functional and what is junk? Front Genet. 2015;6:2.
PubMed PubMed Central Google Scholar
Fang Y, Fullwood MJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinform. 2016;14(1):42–54.
Jarroux J, Morillon A, Pinskaya M. History, discovery, and classification of lncRNAs. Long Non Coding RNA Biol. 2017;1008:1–46.
Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17(1):47–62.
Pang Y, Mao C, Liu S. Encoding activities of non-coding RNAs. Theranostics. 2018;8(9):2496.
CAS PubMed PubMed Central Google Scholar
Gooding AJ. Characterizing a role for the lncRNA BORG during breast cancer progression and metastasis. Case Western Reserve University; 2018.
Wu H, Yang L, Chen L-L. The diversity of long noncoding RNAs and their generation. Trends Genet. 2017;33(8):540–52.
Chen L-L. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 2016;17(4):205–11.
Jathar S, et al. Technological developments in lncRNA biology. Long Non Coding RNA Biol. 2017;1008:283–323.
Herman AB, Tsitsipatis D, Gorospe M. Integrated lncRNA function upon genomic and epigenomic regulation. Mol Cell. 2022;82(12):2252–66.
CAS PubMed PubMed Central Google Scholar
Ashwal-Fluss R, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56(1):55–66.
Youness RA, et al. A comprehensive insight and in silico analysis of CircRNAs in hepatocellular carcinoma: a step toward ncRNA-based precision medicine. Cells. 2024;13(15):1245.
CAS PubMed PubMed Central Google Scholar
Zeng Y, et al. The biogenesis, function and clinical significance of circular RNAs in breast cancer. Cancer Biol Med. 2021;19(1):14–29.
Zhang X-O, et al. Complementary sequence-mediated exon circularization. Cell. 2014;159(1):134–47.
Jeck WR, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141–57.
CAS PubMed PubMed Central Google Scholar
Rybak-Wolf A, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2015;58(5):870–85.
Zhang L, et al. Circular RNAs: functions and clinical significance in cardiovascular disease. Front Cell Dev Biol. 2020;8:584051.
PubMed PubMed Central Google Scholar
Zhang Z, Yang T, Xiao J. Circular RNAs: promising biomarkers for human diseases. EBioMedicine. 2018;34:267–74.
Comments (0)